Читаем Звезды: их рождение, жизнь и смерть полностью

В процессе оседания газа в черную дыру температура внутренних частей диска станет очень высокой. Такой диск может быть мощным источником рентгеновского излучения. Мощность и спектр излучения в первом приближении такие же, как и от нейтронных звезд — рентгеновских пульсаров. Разумеется, рентгеновское излучение при аккреции газа на черную дыру не может носить характер строго периодических импульсов (как у Геркулеса Х-1 и Центавра Х-3). Но ведь далеко не все рентгеновские пульсары — нейтронные звезда — излучают «секундные» импульсы. Этому может, например, помешать сильное рассеяние или «неблагоприятная» (по отношению к земному наблюдателю) ориентация оси вращения нейтронной звезды. В то же время рентгеновский источник — горячий компактный диск, вращающийся вокруг нейтронной звезды, может из-за своего орбитального движения вокруг «оптической компоненты» периодически затмеваться точно так же, как и рентгеновский пульсар.

Таким образом, в принципе, среди рентгеновских источников — компонент тесных двойных систем могут быть и черные дыры. Решающий тест, позволяющий отличить черную дыру от нейтронной звезды, состоит в определении массы такого рентгеновского источника. К сожалению, эта задача оказывается далеко не простой. Из зависимости лучевых скоростей оптической звезды от времени, вызванной ее орбитальным движением вокруг центра тяжести системы, можно получить только функцию масс (см. § 1), но отнюдь не массу «невидимого» рентгеновского источника. Если бы рентгеновский источник имел пульсирующую строго периодическую компоненту, то в сочетании с анализом кривой лучевых скоростей оптической компоненты можно было бы определить массы каждой из компонент. Но в случае рентгеновского источника, связанного с черной дырой, пульсирующей компоненты в рентгеновском излучении не может быть. При такой ситуации приходится применять разного рода косвенные методы, далеко не всегда надежные.

Рис. 24.1: Схема, поясняющая вариации лучевых скоростей линии Не II 4486 в «антифазе» с линиями поглощения оптической компоненты системы.

Уже несколько лет обсуждается возможность того, что яркий рентгеновский источник Лебедь Х-1 обусловлен черной дырой. Как известно, этот источник надежно отождествляется с яркой звездой класса В, у которой длины волн спектральных линий меняются с периодом 5,6 дня. И вот появилось сообщение, что длина волны линии излучения ионизованного гелия в спектре этой звезды меняется с тем же периодом, но с противоположной фазой. Если бы эти наблюдения подтвердились, то естественно было бы считать, что эта линия излучения возникает не в атмосфере «оптической» звезды, а в газовой струе около рентгеновского источника или в окружающем его диске. Тогда понятно, почему изменения лучевых скоростей этой линии противоположны по фазе изменениям лучевых скоростей других линий (рис. 24.1). Из измеренного отношения амплитуд лучевых скоростей, как легко понять, непосредственно находится отношение масс. Так как масса оптической звезды класса В около 20M, а отношение амплитуд лучевых скоростей как будто оказалось равным 1 : 2, то сразу же следовал важнейший вывод, что масса рентгеновской звезды около 10M. Так как верхний предел массы нейтронных звезд около 2,5M, то выходило, что источник Лебедь Х-1 — черная дыра. Большинство исследователей в настоящее время (1983 г.) считают, что компактная рентгеновская компонента Лебедя Х-1 имеет массу, превышающую шесть солнечных, следовательно, является черной дырой.

С проблемой сверхмассивных черных дыр должна быть тесно связана общая проблема активности ядер галактик и квазаров, которой уделялось так много времени в астрономии в течение последнего десятилетия.

Теперь настала пора поговорить о приеме гравитационного излучения как методе обнаружения коллапса звезд. Но прежде всего читатель должен получить хотя бы самое общее представление о гравитационных волнах.

Рис. 24.2: Схема гравитационного квадруполя.
Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука