Читаем Звезды: их рождение, жизнь и смерть полностью

1975 год в рентгеновской астрономии прошел под знаком рентгеновских всплесков. Одновременно работающие три спутника — «АНС», «SAS-3» (США) и «Ариэль» (Англия) непрерывно получали богатый наблюдательный материал. Было установлено, что всплески, исходящие от NGC 6624, почти периодичны; наблюдалась последовательность всплесков, разделенных промежутками времени 0,22 суток. Впрочем, через месяц этот интервал сильно укоротился. Вскоре были обнаружены рентгеновские всплески от других шаровых скоплений, например, NGG1851, NGC 6388, NGC6541 и ряда других. Очень интересный источник рентгеновских всплесков был обнаружен около галактического центра. «Квазипериод» рентгеновских всплесков в этом случае оказался рекордно коротким, около 17 с. От этого источника уже наблюдалось несколько тысяч импульсов (см. рис. 23.15).

Любопытно отметить, что мощность каждого отдельного всплеска от указанного источника тем больше, чем длительнее «спокойный» интервал времени до последующего всплеска. Создается определенное впечатление, что всплеск определяется постепенным «накоплением» некоторого запаса энергии, которая затем быстро освобождается. Это может быть, например, накоплением газа в сильном магнитном поле магнитосферы нейтронной звезды с последующим быстрым «высыпанием» на ее поверхность. После того, как координаты этого источника были определены с точностью 1, на его месте в красных лучах было обнаружено дотоле неизвестное (из-за сильного межзвездного поглощения света) шаровое скопление.

В настоящее время (начало 1983 г.) 12 (из 35) таких источников рентгеновского излучения (получивших название «барстеров») отождествляются с шаровыми скоплениями, вернее, с их самыми центральными частями.

Рис. 23.15: Запись всплеска рентгеновского излучения от источника МХВ 1728—34.

Тот факт, что пространственное распределение барстеров такое же, как и шаровых скоплений, означает, что эти рентгеновские источники принадлежат к старейшему («второму») типу звездного населения нашей Галактики. По-видимому, значительная, если не большая, часть рентгеновских источников в туманности Андромеды (см. рис. 23.2) является барстерами. В этой галактике 17 из 224 обнаруженных рентгеновских источников находятся в шаровых скоплениях. Всего в М 31 насчитывается 237 шаровых скоплений, в то время как в нашей Галактике их около 150.

Выше, на стр. 696, мы уже говорили о двух типах рентгеновских источников в Галактике, имеющих, соответственно, «плоское» и «полусферическое» распределение. Теперь мы можем первые отождествить с массивными двойными системами типа Центавр Х-3, у которых «оптическим» компонентом является голубой массивный сверхгигант. Источники второго типа — это барстеры и сходные с ними старые объекты, у которых мощность рентгеновского излучения примерно такая же, как у источников I типа, но зато мощность оптического излучения в 1000 раз меньше. Хотя двойственность барстеров пока еще не доказана прямыми наблюдениями, вряд ли в этом можно сомневаться. Напрашивается вывод, что у барстеров и сходных с ними объектов оптическим компонентом является маломассивный красный карлик. Объектами, сходными по своей природе с барстерами, могут быть ярчайшие источники Скорпион Х-1 и Лебедь Х-2.

Вернемся теперь к «обычным» барстерам. Доказано, что они испускают рентгеновское излучение и в промежутках между вспышками. Существенно, что энергия, излученная между вспышками, примерно в сто раз превышает энергию, излученную при вспышках. Это обстоятельство имеет решающее значение для понимания природы рентгеновского излучения барстеров. Излучение барстеров в промежутках между вспышками обусловлено аккрецией газа от второго компонента двойной системы, подобно тому, как это происходит в массивных двойных системах. Однако, по мере накопления вещества на поверхности нейтронной звезды, возникают благоприятные условия для термоядерного взрыва на ее поверхности, вызывающего мощную вспышку рентгеновского излучения. При такой вспышке на грамм вещества выделяется c2 энергии (где = 10-3 — «упаковочный эффект» при синтезе ядер), а при аккреции на нейтронную звезду 0,1c2 эрг/г. Теперь понятно, почему энергия, излучаемая между всплесками, примерно в 100 раз превосходит энергию, излучаемую при всплесках[ 59 ].

Существует полная аналогия между барстерами и обычными новыми звездами, вспышки которых обусловлены термоядерными взрывами водорода, скапливающегося на поверхности белого карлика. Оптической астрономии давно известны пекулярные звездные объекты, являющиеся тесными двойными системами, одна из компонент которых — белый карлик. Можно провести интересную аналогию между такими системами и системами, содержащими нейтронную звезду. Заметим, что свойства тесных двойных систем зависят еще от характера перетекания вещества на компактный объект (звездный ветер, перетекание через лагранжеву точку).

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука