Совершенно другую геометрию излучения предложили Радхакришнан и Кук. В развитой ими картине излучение вовсе не обязательно связывать с поверхностью светового цилиндра. Излучающим агентом также являются релятивистские электроны, но они релятивистские «сами по себе», а не потому, что движутся (вращаются) с почти световой скоростью, находясь около поверхности светового цилиндра (как в модели Голда). Релятивистские электроны в картине Радхакришнана — Кука движутся в области магнитных полюсов нейтронной звезды и излучают благодаря некоторой модификации синхротронного механизма. В отличие от обычного синхротронного механизма, где релятивистские электроны движутся по спирали вокруг магнитных силовых линий, причем угол между векторами скорости и поля достаточно велик, здесь электроны движутся практически точно по силовым линиям, а излучают только благодаря
Хотя применение «обобщенного» (так называемого изгибного) синхротронного механизма к радиоизлучению пульсаров представляет несомненный интерес, так как довольно непринужденно объясняет важнейшее его свойство, а именно — направленность, при более детальном рассмотрении обнаруживаются серьезные трудности. Дело в том, что ширина пучков, определяющая длительность субимпульсов, должна хотя и слабо, но все же зависеть от частоты излучения. Ничего подобного, однако, не наблюдается. На всех частотах длительность субимпульсов одинакова. Имеются также серьезные расхождения между наблюдаемыми свойствами поляризации пульсарного радиоизлучения и ожидаемыми согласно той или иной модификации синхротронного механизма.
Резюмируя, следует сказать, что общепринятой теории радиоизлучения пульсаров пока еще нет, хотя отдельные ее элементы, по-видимому, имеются. Вся сложная картина радиоизлучения пульсаров должна определяться совокупным влиянием большого числа факторов: сильного магнитного поля, коллективным взаимодействием заряженных частиц и полей и, конечно, движением плазмы с релятивистской скоростью около внутренней границы светового цилиндра.
До сих пор мы в основном обсуждали вопрос о «геометрии» излучения. Теперь следует остановиться на тех физических процессах, которые могут быть его причиной. Прежде всего рассмотрим вопрос о
Особняком стоит пульсар в Крабовидной туманности. Наряду с радиоизлучением, средняя мощность которого
Представляет интерес оценить для пульсаров мощность излучения единицы объема в излучающей области. Учитывая геометрию пульсаров, можно сделать вывод, что протяженность излучающей области «в глубину» не может превосходить радиуса светового цилиндра. С другой стороны, из длительности импульсов следует, что проекция этой области на поверхность нейтронной звезды должна иметь линейные размеры порядка нескольких десятых ее радиуса. Отсюда, в частности, следует, что у пульсара в Крабовидной туманности объем излучающей области не превосходит 1023 см3. Поэтому излучаемая единицей объема мощность в рентгеновском и гамма-диапазонах у этого пульсара превосходит
Важной характеристикой интенсивности излучения является яркостная температура (см. § 4). Если для оптического излучения пульсара в Крабовидной туманности яркостная температура близка к десяти миллиардам кельвинов, а в рентгеновском диапазоне она равна «всего лишь» сотне тысяч кельвинов, то в радиодиапазоне она достигает огромной величины