Читаем Звезды: их рождение, жизнь и смерть полностью

Огромная точность, с которой сейчас определяются периоды пульсаров и различные их вариации, позволяет сделать еще один важный вывод, касающийся природы пульсаров. Представим себе, что пульсар является компонентой двойной системы. Тогда величина его периода должна периодически меняться в соответствии с его орбитальным движением в двойной системе. Из того простого факта, что таких периодических изменений периода ни у одного пульсара не наблюдается, следует очень важный вывод, что пульсары (вернее, отождествляемые с ними нейтронные звезды) не являются компонентами кратных звездных систем. Этот факт сам по себе очень удивителен. Ведь двойственность очень распространена среди звезд. Как уже говорилось в § 14, по крайней мере 50% всех звезд входит в состав двойных звезд, а среди молодых, массивных звезд этот процент еще выше. А между тем из известных в настоящее время 350 пульсаров только три принадлежат к двойной звездной системе (см. ниже). До этого в астрономии не был известен какой-либо тип звезд, обладавший таким свойством. В рамках существующих представлений об образовании нейтронных звезд отсутствие двойственности у пульсаров как будто можно понять. Прежде всего достаточно велика вероятность того, что вследствие взрыва одной из компонент двойной системы пара распадается. Это будет так в случае, когда расстояние между компонентами двойной системы велико и эволюция каждой из компонент протекает более или менее независимо. Кроме того, требуется, чтобы во время взрыва большая часть массы звезды была выброшена в межзвездное пространство с достаточно большой скоростью. Однако, если взрыв имел место в «тесной» двойной системе, где расстояние между компонентами невелико, ситуация может быть совершенно другой. В этом случае, как мы видели в § 14, взрываться будет менее массивная звезда. При такой ситуации пара не будет разрушена даже тогда, когда большая часть взорвавшейся звезды будет выброшена в межзвездное пространство. Почему же не наблюдается пульсаров — компонент двойных систем, если большая часть таких систем сравнительно тесные? Советский астрофизик В. А. Шварцман выдвинул очень интересную гипотезу, объясняющую эту загадку. По его мнению, в двойной системе, особенно, если она тесная, имеет место непрерывное падение газа от нормального компонента на нейтронную звезду (так называемый «процесс аккреции»). Этот процесс может как бы «подавить» радиоизлучение нейтронной звезды и «потушить» связанный с нею пульсар. Когда последний «молод» и его «активность» велика, аккреция не в состоянии «заглушить» радиоизлучение нейтронной звезды. Но число таких очень молодых пульсаров можно буквально перечислить по пальцам одной руки. Большинство же пульсаров достаточно «стары», и если они входят в состав двойных систем, их излучение будет подавлено.

Летом 1974 г. на обсерватории Аресибо был обнаружен очень слабый пульсар PSR 1913, являющийся компонентой тесной двойной системы с периодом обращения 7h46m. Расстояние между компонентами немного больше радиуса Солнца. Вторая компонента должна быть либо белым карликом, либо еще более компактным объектом, заведомо не заполняющим свою полость Роша. Поэтому никакой аккреции в этой системе нет, что и делает пульсар наблюдаемым. Сама по себе аккреция газа на нейтронную звезду, находящуюся в двойной системе, может привести к чрезвычайно интересным и важным последствиям. Об этом мы будем много говорить в § 23. Следует, однако, заметить, что вопрос о причинах отсутствия двойственности у пульсаров до конца еще не ясен. Здесь у теоретиков еще много пищи для размышлений.

Рис. 21.3: «Синтетические» профили 18 пульсаров.

«Синтетические» профили пульсаров обнаруживают большое разнообразие. Хотя, как уже упоминалось выше, они показывают значительную изменчивость, для данного пульсара основные особенности таких профилей остаются неизменными и могут служить как бы его «паспортом». Например, есть такие пульсары, где профиль состоит из одного простого импульса, например, неоднократно уже упоминавшийся пульсар PSR 0833—45. Есть пульсары, у которых синтетический профиль состоит из двух, а то и трех «субимпульсов». Это хорошо видно из рис. 21.3, где приведены синтетические профили 18 пульсаров.

Интервал времени, в течение которого наблюдается излучение от пульсаров (так называемое «окно»), обычно составляет около 1/30 от периода. На рис. 21.4 приведена диаграмма, дающая зависимость ширины «окна» от периода пульсаров. Ширину «окна» удобно измерять в угловых единицах (360° соответствуют полному периоду пульсаров). На этом рисунке хорошо видно, что точки, соответствующие различным пульсарам, группируются около прямой, соответствующей ширине «окна» 9°.

Рис. 21.4: Зависимость ширины «окна» пульсаров от их периода.
Рис. 21.5: «Дрейф» импульсов в пределах «окна».
Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука