Читаем Звезды: их рождение, жизнь и смерть полностью

В связи с последним обстоятельством возникает вполне естественный вопрос, вернее, два вопроса: почему далеко не во всех радиотуманностях — остатках вспышек сверхновых — наблюдаются пульсары и почему пульсары, как правило, не находятся в пределах радиотуманностей? Рассмотрим прежде первый вопрос. Действительно, в большей части из известных радиотуманностей пульсары не обнаружены. Например, в самом ярком (после Солнца) радиоисточнике на небе, Кассиопее А, являющемся едва ли не самым молодым остатком вспышки сверхновой (см. часть III), пульсар не обнаружен. То же самое следует сказать о знаменитой системе тонковолокнистых туманностей в созвездии Лебедя, а также об остатках исторических Сверхновых 1572 г. (Тихо) и 1604 г. (Кеплер). В известном каталоге австралийского радиоастронома Милна содержится свыше 100 таких объектов, из которых только у трех (или четырех) обнаружены пульсары. Объяснение этому очень простое: радиоизлучение пульсаров неизотропно (т. е. не имеет одинаковой интенсивности по всем направлениям), а сосредоточено в пределах некоторого конуса, ось которого наклонена к его оси вращения (см. рис. 20.1). Надо, конечно, еще иметь в виду, что для удаленных радиотуманностей поток излучения от пульсаров будет мал.

Вполне возможно, что в близком будущем будут открыты еще несколько слабых пульсаров у еще более удаленных туманностей. Все же эффект направленности излучения пульсаров должен играть важнейшую роль при объяснении отсутствия пульсаров в остатках вспышек сверхновых. Нам, например, очень повезло, что Крабовидная туманность, в дополнение ко многим своим удивительным свойствам, о которых речь шла в части III, к тому же имеет пульсар, который особенно «удачно» ориентирован по отношению к земным наблюдателям...

Отсутствие радиотуманностей вокруг подавляющего большинства пульсаров объясняется еще проще. Дело в том, что основная часть известных сейчас пульсаров имеет возраст, во всяком случае превышающий миллион лет, в то время как возраст даже наиболее «старых» радиотуманностей — остатков вспышек сверхновых — по крайней мере в 10 раз меньше. В § 16 мы уже занимались оценкой возраста этих туманностей. Как же определяется возраст пульсаров?

Оказывается, что этот возраст можно определить довольно надежно, пожалуй, даже более надежно, чем возраст радиотуманностей. Выше уже шла речь о непрерывном увеличении периодов у всех без исключения пульсаров. Следовательно, можно полагать, что молодые, недавно образовавшиеся нейтронные звезды (которые радиоастрономы наблюдают как пульсары) должны вращаться значительно быстрее старых, уже порядком затормозивших свое вращение объектов. Отсюда ясно, что, зная период пульсара и его рост за единицу времени, можно определить его возраст. Обозначим изменение периода пульсара P за одну секунду через . Тогда ясно, что если бы за всю историю эволюции пульсара величина P была постоянной, то его возраст, выраженный в секундах, определялся бы простой формулой

(20.5)

Тот факт, что в начале «жизни» пульсара, когда его торможение должно было быть особенно сильным, а величина P естественно была значительно больше, чем у «старого» пульсара, заставляет сделать вывод, что действительный возраст пульсара должен быть меньше. Теория торможения пульсаров, о которой речь будет ниже, дает такую формулу для возраста пульсаров:

(20.6)
Рис. 20.2: Схема, поясняющая зависимость периода пульсара от его возраста.

На рис. 20.2 схематически приведена зависимость периода пульсара от его возраста, поясняющая сказанное выше. Применение этой формулы к пульсарам, находящимся внутри радиотуманностей, дает весьма впечатляющие результаты. Например, у пульсара NP 0531, находящегося внутри Крабовидной туманности, P = 0,033 секунды, = 36 наносекунд/день или 4,2 10-13 с/с. Отсюда по формуле (20.6) t1 = 4 1010 с или 1200 лет, что на 20% превосходит реальный возраст Крабовидной туманности, образовавшейся в 1054 г. Наконец, возраст пульсара PSP 0835—45 оказывается всего 12 000 лет, в то время как возраст туманности Паруса X (остатка сверхновой) около 10 000 лет.

Недавно был обнаружен третий пульсар, находящийся внутри остатка вспышки сверхновой MSH 15-52. Этот очень слабый пульсар имеет период 0,15 с и возраст (определяемый по замедлению вращения) 1570 лет. Пульсар этот, подобно пульсару в Крабовидной туманности, наблюдается как и в радио-, так и в рентгеновских лучах. Радиотуманность MSH 15-52, подобно объекту Паруса X, является комбинацией плериона и оболочки.

Что касается всех остальных пульсаров, не находящихся в пределах радиотуманностей, образовавшихся после вспышек сверхновых, то их возрасты, определенные по формуле (20.6), как правило, превышают миллион лет. Например, возраст первого из открытых пульсаров, СР 1133, оказывается 5 106 лет.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука