Читаем Звезды: их рождение, жизнь и смерть полностью

Как подчеркивалось выше, для обеспечения оптического, а тем более рентгеновского излучения Крабовидной туманности в течение столетий необходимо непрерывное «впрыскивание» новых порций релятивистских электронов. Естественно было предположить, что, кроме таких электронов, в туманность должны «впрыскиваться» и релятивистские тяжелые ядра — протоны, альфа-частицы и пр., короче говоря, космические лучи. В отличие от электронов, тяжелые релятивистские частицы не будут терять энергию на синхротронное излучение. Если бы их поступало в туманность не меньше, чем релятивистских электронов, их бы накопилось там столько, что давление на газовые волокна было бы весьма значительным, и, следовательно, ускорение этих волокон должно было быть гораздо больше наблюдаемого. Отсюда можно сделать вывод, что источник пополнения Крабовидной туманности релятивистскими частицами поставляет в нее преимущественно электроны и позитроны. Как впоследствии выяснилось, это связано с наличием в центре Краба весьма активного пульсара (см. ниже).

Другие остатки исторических сверхновых, вспыхнувших в Галактике в 1006, 1181, 1572 и 1604 гг., не дают такое количество информации, как Крабовидная туманность. Это нельзя объяснить только тем, что они более удалены от нас. Просто Крабовидная туманность оказалась гораздо более «богатым» и более интересным объектом. Все же мы кратко остановимся на описании остатков вспышек этих сверхновых.

Нет определенных указаний на существование оптически наблюдаемых остатков вспышки Сверхновой 1006 г. Однако на месте вспышки, в южном созвездии Волка, обнаружен довольно слабый протяженный радиоисточник[ 42 ]. Угловые размеры этого источника довольно велики: 25, или в пять раз больше, чем у Крабовидной туманности. Если принять, что Сверхновая 1006 г. имела видимую звездную величину -7,5 (на что указывают старинные арабские и китайские хроники), то, с учетом межзвездного поглощения света, расстояние до вспыхнувшей звезды было около 1000 пс. При таком расстоянии линейный радиус остатка должен быть около 3,5 пс. Зная возраст остатка ( 1000 лет), можно определить среднюю скорость расширяющейся оболочки, которая близка к 4000 км/с. Это гораздо больше, чем у Крабовидной туманности, и соответствует скорости выброса газов у сверхновых I типа, получаемых из ширин линий излучения в их спектрах (см. § 15). Следует иметь в виду, что Сверхновая 1006 г. вспыхнула довольно «высоко» над галактической плоскостью, где плотность межзвездного газа должна быть совершенно незначительна. Недавно с помощью «ультрафиолетового» спутника IUE (см. «Введение») в спектре горячей звезды, на которую проектируется остаток сверхновой 1006 г., были обнаружены широкие насыщенные линии поглощения ионизованного железа. Отсюда следует, что количество железа в этом остатке очень велико. Этот результат имеет исключительное значение для понимания природы сверхновых I типа (см. ниже). Этими скудными сведениями пока исчерпываются наши знания об остатках вспышки Сверхновой 1006 г. На месте Сверхновой 1181 г., наблюдавшейся китайскими и японскими астрономами в созвездии Кассиопеи, находится довольно яркий (следовательно, молодой) радиоисточник 3C 58. Он, так же как и Краб, лишен оболочечной структуры. В оптическом спектре этого источника наблюдаются слабые линии излучения. Из анализа этих линий следует, что радиоисточник 3С 58 расширяется со скоростью 1000 км/с, а расстояние до него 2500 пс.

Гораздо больше мы знаем об остатках вспышки «звезды Тихо» — Сверхновой 1572 г. На месте вспышки этой Сверхновой наблюдаются очень слабые тонковолокнистые «кусочки» туманности. Наблюдения, разделенные промежутком времени порядка 10 лет, показывают некоторые изменения в относительной яркости волокон. Вместе с тем спектральные наблюдения не обнаружили значительных лучевых скоростей. Еще в 1952 г. на месте вспышки был найден источник радиоизлучения. Дальнейшие наблюдения позволили найти его структуру, которая весьма примечательна. В радиолучах этот источник представляет собой яркое, очень тонкое кольцо, диаметр которого 7, а толщина меньше одной сотой радиуса. Расстояние до Сверхновой 1572 г. оценивается (довольно неуверенно) в 5000 пс. Это расстояние, с учетом межзвездного поглощения света, дает для абсолютной звездной величины Сверхновой 1572 г. значение около -18m, что близко к абсолютной величине сверхновой I типа. На месте Сверхновой 1572 г. обнаружен рентгеновский источник, о котором речь будет идти в § 20.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука