Из-за потрясений, вызванных Второй мировой войной, вступительные экзамены в два известнейших образовательных учреждения Парижа – Высшую нормальную школу и Политехническую школу – были отложены на полгода. Экзамены продолжались месяц и были чрезвычайно сложными, но молодой Бенуа Мандельброт справился с ними. Один из преподавателей вскоре обнаружил, что из всех кандидатов лишь один сумел ответить на особенно сложный математический вопрос. Он сразу предположил, что это был Мандельброт, и, спросив у него, убедился в своей правоте. Преподаватель признался, что ему самому задача оказалась не по зубам из-за «поистине ужасного тройного интеграла», на котором был основан расчет.
Мандельброт рассмеялся. «Это очень просто». Он объяснил, что на самом деле тот интеграл представлял собой слегка замаскированный объем шара. Если воспользоваться подходящей системой отсчета, все очевидно. А формулу для объема шара знают все. Вот и вся задача. Стоит понять, в чем фокус… Мандельброт, очевидно, был прав. Шокированный преподаватель ушел, бормоча себе под нос: «Ну конечно же, все очевидно». Почему он сам этого не заметил?
Потому что мыслил символьно, а не геометрически.
Мандельброт был прирожденным геометром и обладал мощной зрительной интуицией. После трудного детства (как еврей в оккупированной Франции он подвергался постоянной опасности быть арестованным нацистами и имел все шансы закончить жизнь в лагере смерти) Мандельброт сделал необычную, но весьма и весьма творческую математическую карьеру, основную часть которой он работал научным сотрудником лаборатории IBM им. Томаса Уотсона в Йорктаун-Хайтс (штат Нью-Йорк). Там он написал серию статей на самые разные темы, от частотности слов в языках до уровней паводков на реках. Затем, в приступе вдохновения, объединил массу этих разнообразных и забавных исследований в единую геометрическую концепцию – концепцию фрактала.
Традиционные в математике фигуры, такие как шар, конус или цилиндр, имеют очень простую форму. Чем ближе вы их разглядываете, тем более гладкими и плоскими они кажутся. Общий вид исчезает, а то, что остается, больше всего похоже на абсолютно однообразную равнину. Фракталы выглядят иначе, они имеют детальную структуру на любом масштабе увеличения. Он бесконечно извилист. «Облака не шары, – писал Мандельброт, – горы не конусы, береговая линия не состоит из окружностей, а кора не гладкая, да и молния движется не по прямой». Фракталы отражают те аспекты реальности, которые остаются за рамками традиционных структур математической физики. Их появление привело к фундаментальным изменениям в том, как ученые моделируют реальный мир, с конкретными приложениями в физике, астрономии, биологии, геологии, лингвистике, глобальных финансах и многих других областях. Кроме того, у фракталов имеются глубокие чисто математические особенности и прочные связи с хаотической динамикой.
Фракталы – одна из нескольких областей математики, которые, не будучи совсем уж новыми, начали бурно развиваться во второй половине XX в. и изменили взаимоотношения между математикой и ее приложениями, предложив новые методы и подходы. Корни фрактальной геометрии восходят к поиску логической строгости в математическом анализе; поиск этот привел около 1900 г. к открытию разнообразных «патологических кривых», основным назначением которых было показать, что наивные интуитивные аргументы могут быть обманчивыми. К примеру, Гильберт определил кривую, которая проходит через все без исключения точки внутри квадрата – проходит не просто вблизи от них, но строго через каждую точку. Эта кривая называется заполняющей, по очевидным причинам, и предупреждает нас об осторожности при работе с понятием измерения. Непрерывное преобразование способно
Однако эти ранние работы остались почти незамеченными за пределами специальных сообществ и рассматривались в основном как диковинки. Чтобы некоторая предметная область «родилась», кто-то должен собрать отдельные кусочки вместе, осознать их фундаментальное единство, сформулировать требуемые понятия с достаточным обобщением – а затем выйти и «продать» свои идеи миру. У Мандельброта, которого ни в коем случае нельзя назвать математиком в традиционном смысле, хватило проницательности и упорства сделать именно это.