Не учтена и теплоёмкость оборудования, но и она также заведомо пренебрежима по сравнению с теплоёмкостью 400 литров воды. Следует заметить, что, с другой стороны,
На втором этапе испытаний к теплогенератору подключался рабочий контур теплоснабжения со значительным увеличением полного объема циркулирующей воды. При этом включался дополнительный циркуляционный насос и производились замеры расхода воды и перепада температуры на входе и выходе «активатора». Измерения производились в нестационарных условиях. Авторы протокола пришли в выводу, что на втором этапе установка продемонстрировала коэффициент преобразования К = 1.48. Анализ данных, относящихся к этому этапу, обнаружил недопустимо низкую точность измерений. Например, измерение расхода воды проводилось с точностью до 100 литров, а производительность циркуляционного насоса на протяжении 15 минут почему-то изменилась в 1.4 раза. Перечень претензий к процедуре проделанных измерений, заключение об их
Поиск публикаций показал, что тема «вихревых генераторов» совсем не отражена в академических научных журналах, хотя частенько всплывала в СМИ и даже в периферийных отраслевых технических журналах. В.К. Урпин прислал мне статью одного из директоров группы «Тепло XXI века» С.В. Козлова под названием «Может ли КПД "вихревого теплогенератора" быть больше единицы?», опубликованную "в порядке обсуждения" журналом "Энергетика в Сибири"» [2]. Статья имеет элегантный эпиграф -«Мы все учились понемногу, чему-нибудь и как-нибудь…», который хорошо согласуется с её довольно необычным содержанием. Первая треть статьи посвящена «ликбезу» в области термодинамики и освежает знания читателя о цикле Карно, о КПД тепловой машины и, главным образом, о принципе действия тепловых на-
сосов — обращённых тепловых машин (или, попросту говоря, холодильников), позволяющих переносить тепло от холодного тела к более горячему за счёт потраченной работы. Эффективность теплового насоса характеризуется коэффициентом КТЭ, который равен отношению количества перенесенного тепла к затраченной работе. КТЭ идеального теплового насоса всегда больше 1 (как величина, обратная КПД) и может неограниченно нарастать по мере снижения разности температур между охлаждаемым и обогреваемым объёмом.
Всё это давно и хорошо известно, но не имеет никакого отношения к теме статьи, поскольку «вихревые генераторы» не имеют ничего общего с тепловыми насосами, кроме лукавого второго названия «тепловые гидродинамические насосы» (ТГН). Несомненно, это понимает и автор, поскольку после дидактических демонстраций схемы реального теплового насоса он переходит к описанию вихревого генератора, никак не пытаясь связать эти два устройства. Замечу, что название ТГН автор использует в качестве обобщающего, потому что механически нагревать воду можно разными способами (цитирую) — «Воздействовать на жидкий теплоноситель можно с помощью разных устройств: насоса типа "улитка" и "вихревой трубы", дисков, турбин и т.д.».
Далее в статье приводятся весьма сомнительные рекомендации по испытанию ТГН с путаными деталями, которые я раскритиковал в письме к Урпину. С.В. Козлов сурово выговорил мне за это: «В статье четко говорится, что приведенная методика применяется только для определения работоспособности теплового гидродинамического насоса, а не для определения КПЭ. Общепринятой методики определения КПЭ до настоящего времени нет, но мы заинтересованы в её создании. Это и сказано в статье». Яснее не скажешь. Тем самым, разработчики ТГН вообще не несут ответственности за заявленные ими заведомо невозможные цифры энергетической эффективности.
Завершает эту примечательную статью внезапная патетическая филиппика против «современных инквизиторов, пригревшихся в комиссиях по лженауке».
К статье подвёрстаны одобрительные отзывы. Один из них, подписанный ныне покойным адептом так называемых «торсионных технологий» Е.А. Акимовым, содержит весьма характерное признание: «К сожалению, в подавляющем большинстве случаев экспериментальные установки с КПД› 100% независимую экспертизу не проходили, хотя по документам изоб-