Попадая на рыльце цветка своего вида, пыльцевое зерно прорастает на нем, образуя пыльцевую трубку, по которой спермин добираются до яйцеклетки, покоящейся в зародышевом мешке. Прорастание начинается с того, что внутренняя оболочка пыльцевого зерна внедряется в одну из пор внешней и разрастается в виде сосочка, в который как бы перекачивается цитоплазма зерна, его вегетативное ядро и генеративная клетка. Первым обычно проникает в пыльцевую трубку вегетативное ядро.
Рис. 24. Почему во многих обоеполых цветках никогда не происходит самоопыления? Один из механизмов такой защиты можно увидеть в цветке яблони. Сначала тычинки, щедро снабжающие пыльцой насекомых, возвышаются над несозревшим рыльцем. Тем временем столбик растет, и к моменту, когда пятилопастное рыльце становится способным принять пыльцу, оно возвышается над тычинками
Вскоре после проникновения в пыльцевую трубку генеративная клетка делится (митотически) и образует два спермия. Каждый из них представляет собой микроскопически малую клеточку, которая состоит из ядра, окруженного густой, однородной на вид цитоплазмой. Иногда спермин формируются в зрелом пыльцевом зерне еще до выхода генеративной клетки в пыльцевую трубку.
Пыльцевая трубка сначала внедряется в ткань рыльца, а затем проникает в столбик пестика. Растущий конец ее выделяет вещества, способные растворять межклеточные ткани, и пыльцевая трубка все глубже и глубже внедряется между клетками столбика, направляясь внутрь завязи — к семяпочкам. Любопытна и еще не объяснена эта способность трубки расти именно в нужном направлении, кратчайшим путем выходя к зародышевому мешку. Здесь не исключены какие-то химические влияния, помогающие трубке находить нужный путь.
Минимальный промежуток времени, необходимый для достижения пыльцевой трубкой семяпочки, равен 15 мин. Чаще всего этот срок составляет несколько часов. Но иногда процесс роста пыльцевой трубки растягивается на несколько месяцев. Так, у нашей березы он длится целый месяц, у ольхи и лещины — лесного ореха — от месяца до двух, а у некоторых представителей тропических орхидей (у них к моменту опыления семяпочки еще не достигают полной зрелости) — даже 6 — 7 месяцев. В последнем случае долгое прорастание, по-видимому, связано с сезонными явлениями, которым подчинена жизнь этих орхидей. Получается так, что опыление у них происходит в один дождливый сезон, а распространение семян — в следующий. Цикл оплодотворения и развития семян растянут таким образом на целый год — от одного дождливого сезона до следующего. Длительность прорастания пыльцы у наших древесных пород вызвана сходными причинами, ведь они вынуждены спешить с цветением: их цветки опыляются ветром и, как уже об этом говорилось выше, целесообразно, чтобы опыление произошло до распускания листьев. Для развития семян нужны поступающие от материнского растения питательные вещества, которые образуются уже летом, когда дерево во всю силу развернет работу своих "фабрик" органического вещества — зеленых листьев.
Любопытно, что у одного и того же вида растений рост пыльцевой трубки бывает быстрым в случае, когда происходит перекрестное опыление, и замедленным при самоопылении. Очевидно, в тех возможных случаях, когда на рыльце одновременно попадут пыльцевые зерна своего и чужого цветков, эта разница в скорости прорастания способствует тому, чтобы произошло более желательное для организма перекрестное опыление.
Достигнув завязи, пыльцевые трубки растут вдоль внутренней ее стенки и попадают в семяпочки через микропиле — пыльцевход. Это — наиболее типичный случай. Но иногда пыльцевая трубка проникает сначала в стенку завязи и только потом в семяпочку через ее основание. Так растут пыльцевые трубки в цветках березы, ольхи, лещины, граба и грецкого ореха.
По пыльцевходу пыльцевая трубка дорастает до вершины зародышевого мешка, растворяет его оболочку и изливает в него свое содержимое: цитоплазму, вегетативное ядро и оба спермия. Последние обычно проходят свой путь в зародышевом мешке через содержимое одной из синергид. К этому времени спермин теряют свою цитоплазму и имеют вид голых ядер.
О дальнейшей судьбе спермиев следует рассказать особо.
Где-то в начале книги нам пришлось упомянуть о борьбе за признание того факта, что у растений есть пол. Борьба эта была достаточно долгой и завершилась лишь менее 90 лет назад. Окончательно и воочию половую природу покрытосеменных растений доказал талантливый немецкий исследователь Э. Страсбургер в 1884 г. На примере цветка подъельника он показал все последовательные фазы внедрения пыльцевой трубки (мужского гаметофита) в зародышевый мешок (женский гаметофит), а затем и слияние ядра спермия с ядром яйцеклетки.