Читаем Жизнь такая же круглая как и Земля (СИ) полностью

Построим на одном графике исходную функцию состояния и полученную с помощью Пляс преобразования:

Рисунок 5. – Искомая и заданная функция

Пунктиром заданная функция, сплошным искомая функция. Как видно из графика функции практически идентичные. 100 % точность не достигается из за того что высокая погрешность при нахождении потока событий 10 первых позитивных и 10 первых негативных событий.

4. ПЛЯС ИНТЕГРАЛ

Пляс интеграл аналогичен Пляс рядам, только учитывается весь спектр гармоник, аналогично тому, что в Интеграле Фурье учитываются все гармоники.

Зададимся следующей функцией плотности вероятности:

(4.1)

где А – функция плотности вероятности, t – текущее время.

График данной функции представлен на рисунке 4.1.

График 4.1. – Функция плотности вероятности.

На основании данной плотности вероятности возможно составить поток событий. Поток событий следующий:

Воспользовавшись формулой 4.2, получим косинусные составляющие случайного процесса для прямого Пляс преобразования:

      (4.2)

Рисунок 4.2. – Косинусные составляющие случайного процесса

Воспользовавшись формулой 4.3, получим синусные составляющие случайного процесса для прямого Пляс преобразования:

                  (4.3)

Рисунок 4.3. – Синусные составляющие случайного процесса.

Воспользовавшись формулой 4.4, получим модуль закономерности в зависимости от периода исследуемой гармоники:

            (4.4)

Рисунок 4.4. – Модуль закономерности случайного процесса.

Учитывая все гармоники от Tn=50 до Tk=83 по формуле 4.2:

(4.5)

Формула 4.5 является обратным преобразованием Пляс интеграла.

График данной функции представлен на рисунке 4.5.

Рисунок 4.5. – полученная плотность вероятности случайного процесса.

Построим графики полученной плотности вероятности и исходной плотности вероятности, рисунок 4.6:

Рисунок 4.6. – Графики исходной и полученной плотности вероятности.

Пунктиром полученная плотность вероятности, сплошным исходная плотность вероятности.

4.1. Построение плотности вероятности методом Пляс интеграла.

Рассмотрим как ведет себя график функции плотности вероятности процесса наступления первой аварии от планово – предупредительного ремонта. В таблице 4.1 представлены данные наступления первой аварии от планово – предупредительного ремонта.

Таблица 4.1. – Моменты наступления первых аварий от времени начала планово – предупредительного ремонта.

Номер аварии

Интервал времени между планово – предупредительным ремонтом и первой аварией

1

2998

2

462

3

179

4

32

5

246

6

352

7

2691

8

443

9

630

10

905

11

585

12

344

Воспользовавшись формулой 4.2, получим косинусные составляющие случайного процесса для прямого Пляс преобразования:

Рисунок 4.7. – Косинусные составляющие случайного процесса

Воспользовавшись формулой 4.3, получим синусные составляющие случайного процесса для прямого Пляс преобразования:

Рисунок 4.8. – Синусные составляющие случайного процесса.

Воспользовавшись формулой 4.4, получим модуль закономерности в зависимости от периода исследуемой гармоники:

Рисунок 4.9. – Модуль закономерности случайного процесса.

Учитывая гармоники от Tn=2000 до Tk=4000 по формуле 4.3 получим:

(4.3)

График данной функции представлен на рисунке 4.10.

4.10. – Плотность вероятности выхода из строя электрооборудования

Данная функция является функцией плотности вероятности наступления аварии от момента проведения последнего ППР.

4.2. Экспериментальное нахождение отрицательного значения плотности вероятности.

Положительным событием для данной плотности вероятности является наступление смерти человека от момента рождения данного человека. Отрицательным же значением для данной плотности вероятности является рождение детей у данных людей, относительно от даты рождения данного человека.

Данные наступления смерти от начала жизни:

Данные рождения детей относительно начала жизни :

Воспользовавшись формулой 4.4. Которая представляет собой прямое Пляс преобразование для косинусных составляющих. Для положительного и отрицательного потока событий в сумме.

      (4.4)

График данной функции представлен на рисунке 4.11.

Рисунок 4.11. – Косинусные составляющие случайного процесса.

Воспользовавшись формулой 4.5. Которая представляет собой прямое Пляс преобразование для синусных составляющих. Для положительного и отрицательного потока событий в сумме.

      (4.5)

График данной функции представлен на рисунке 4.12.

Рисунок 4.12. – Синусные составляющие случайного процесса.

Воспользовавшись формулой 4.4, получим модуль закономерности в зависимости от периода исследуемой гармоники:

Рисунок 4.13. – Модуль закономерности случайного процесса.

Учитывая гармоники от Tn=54 до Tk=82 по формуле 4.6 получим:

(4.6)

График данной функции представлен на рисунке 4.14.

Рисунок 4.14. – Положительная и отрицательная плотность вероятности.

Построим на одном рисунке график данной плотности вероятности и идеальной волны, подчиняющейся закону косинуса:

Рисунок 4.15 – Плотности вероятности жизни человека и идеальная волна.

Пунктиром плотность вероятности жизни человека.

Перейти на страницу:

Все книги серии Пляс теория

Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"
Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"

Я пришел к блаженству применяя мою теорию. Затем, прочитав Новый Завет.  Я был поражен, что  моя теория более подробно раскрывает Новый Завет. Так например, в первой заповеди блаженства сказано - Блаженны нищие духом, ибо их есть Царство Небесное. Что означает нищие духом? Исходя из моей теории нищие духом, - это означает не заставлять себя думать над проблемами, страхами, неприятностями. Ключевое в данной формулировке – не заставлять. Необходимо четко отличать в сознании когда вы заставляете себя думать над проблемой, и когда мысль крутится сама собой в голове. Та часть мыслей, которая сама собой крутится в Вашей голове является вне вашей воле. Вы не сможете их устранить. Но они не помешают Вам прийти к блаженству. Нужно только лишь не заставлять себя думать над проблемой. Это сделать на столько же легко настолько же и сложно. Разум привык все обдумывать. При этом не заставлять себя думать не подразумевает сильные усилия. Вы не напрягаетесь, а просто не заставляете себя думать.

Asus

Математика / Православие / Христианство / Прочая старинная литература / Книги по психологии

Похожие книги