Читаем Жизнь океанских глубин полностью

Информация органов боковой линии помогает рыбам поддерживать взаимный контакт. Особенно важна она в брачный период, чтобы синхронизировать поведение половых партнеров. Оболочки икринок у многих рыб под воздействием воды всего за 20–40 секунд становятся непроницаемыми для сперматозоида. Чтобы течение не успело унести облачко сперматозоидов, и за отпущенные природой мгновения произошло оплодотворение икринки, действия самцов и самок должны быть строго согласованными. Обмен информацией ведется на языке водяных струй. Самцы, ухаживая за самками, усиленно бьют хвостом, подавая сигнал к началу икрометания. Команды самца нетрудно имитировать. Двигая стеклянной палочкой около хвоста колюшки, можно заставить созревшую самку откладывать икру.

Рыбы широко пользуются дистанционным осязанием.

Оно для них важнее, чем зрение. Заядлые рыбаки знают, что при ловле щук не имеет большого значения, как выглядит блесна: достаточно, чтобы она просто поблескивала в воде. Гораздо важнее, как она движется и вибрирует. Дистанционное осязание одинаково необходимо и для хищных рыб, и для вегетарианцев. Первым оно сообщает о приближении добычи, вторых предупреждает об опасности.

Обнаружение подвижных предметов — это пассивная локация. Рыбы владеют и активной локацией. Ученые заметили, что слепые караси способны обнаруживать неподвижные предметы. В аквариуме они ведут себя более осмотрительно, чем зрячие рыбы, и не натыкаются на его прозрачные стенки, не сталкиваются с подводными камнями, корягами, отлично чувствуют, где находится дно и где вода переходит в воздушную среду.

Активная локация основывается на том, что при движении в воде любой предмет вызывает волнообразные колебания. Волны давления, распространяясь впереди плывущей рыбы, обгоняют ее. Они первыми докатываются до встречных предметов, отражаются от них, возвращаются назад и улавливаются волосковыми клетками органов боковой линии. Для морских глубоководных рыб, живущих в вечном мраке океанской бездны, активная локация имеет огромное значение и полностью заменяет зрение. В толще воды, где нет никаких крупных объектов, кроме живых существ, легко анализировать окружающую обстановку, и достоверность полученной информации может быть очень высокой. Не случайно у глубоководных рыб боковая линия обычно развита лучше, чем у живущих на мелководье.

Вольтметр

В солидных научных трудах, посвященных физиологии органов боковой линии, можно столкнуться с упоминанием двух типов рецепторов: обычных, или механорецепторов, и «особых», «специализированных». «Особые» рецепторы стоят того, чтобы им посвятить отдельный рассказ. Начну с того, что они не принимают участия в выполнении исконных функций органов боковой линии и не способны реагировать на слабые механические воздействия воды. Ученые подозревают, и для этого достаточно оснований, что «особые» рецепторные клетки являются датчиками, реагирующими на температурные и химические воздействия. Они информируют организм о концентрации солей в морской воде.

Важнейшей функцией «специализированных» датчиков является электрорецепция. Они работают или как вольтметры постоянного тока, или как приборы, способные уловить напряжение высококачественных электрических импульсов, и хорошо различаются по внешним признакам. Рецепторы для высокочастотных импульсов называют бугорковыми органами. Здесь мы их касаться не будем, так как они более характерны для пресноводных рыб. Второй тип рецепторов получил название ампулированных. В этом случае чувствительные датчики упрятаны на дне крохотных колбочек. Наибольшую известность получили ампулы Лоренцини, характерные для акул и скатов. Впервые их описал еще в 1678 году итальянский ученый, именем которого названы эти образования. Сам Лоренцини считал ампулы слизистыми железами, каких немало в коже рыб.

Ампулы Лоренцини представляют собою крохотные, не слишком аккуратно сработанные длинногорлые колбочки, открывающиеся на поверхности тела рыбы крохотной порой. В дно вмонтировано несколько рецепторных клеток, снабженных ресничками, выступающими в полость колбы. Это воспринимающие элементы рецептора. Стенки канала и самой ампулы служат для электрорецептора изолятором, предохраняющим от электрических разрядов собственной мускулатуры рыбы. Полость колбы и ее горла заполнена желеобразным веществом, хорошо проводящим электричество. Это входной канал рецептора, клемма вольтметра.

У морских рыб отличные электрорецепторы. У скатов их пороговая чувствительность равна 0,00000000005 ампера. Рецепторы наиболее плотно покрывают переднюю часть головы. На хвосте их значительно меньше. В результате лоб рыбы в 30 раз чувствительнее к электричеству, чем ее хвост. Электрорецепторы размещены на коже в определенном порядке, что позволяет акулам и скатам хорошо ориентироваться в электрической обстановке и уверенно реагировать на электрические поля с градиентом, то есть с постепенным изменением напряженности порядка 0,02 микровольта на сантиметр, и безошибочно обнаруживать источник сверхслабых электрических импульсов на расстоянии 10–15 сантиметров.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Инсектопедия
Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры. «Инсектопедия» – это книга, показывающая нам, как насекомые инициируют наши желания, возбуждают страсти и обманывают наше воображение, исследование о границах человеческого мира и о взаимодействии культуры и природы.

Хью Раффлз

Зоология / Биология / Образование и наука
Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука