Если необходимо изучать непрозрачные предметы с высокой детализацией, то, само собой разумеется, в этом случае необходимо строить системы с большим коэффициентом увеличения, т. е. микроскопы. Внешний вид одного из таких инфракрасных микроинтроскопов МИК-1, разработанного в содружестве с коллективом одного из заводов, представлен на вкладке.
На обороте той же вкладки представлено изображение, полученное из внутренних областей исследуемого материала. В данном случае объектом исследования был полупроводниковый кремний. Наблюдаемые на этом изображении отрезки спиральных линий характеризуют собой зоны скопления дислокаций. (Предварительно исследуемый кристалл кремния был декорирован атомами меди.)
На магистральных нефтепроводах, например, можно будет следить за степенью чистоты нефти, за концентрацией растворенных в ней газов, за образованием эмульсий и т. п. Минералоги смогут изучать твердые и газовые включения в различных минералах, концентрацию и распределение в них примесей и т. д.
Большую помощь инфракрасная интроскопия окажет при изучении внутренних напряжений в различных непрозрачных телах, так как в технике инфракрасной интроскопии возможно применение и поляризованных лучей.
Даже первые успехи интроскопии с ее пока довольно скромными средствами свидетельствовали о неограниченных ее возможностях и огромной ценности для многих отраслей науки и техники.
В настоящее время трудно даже предугадать все области возможного применения инфракрасной интроскопии. С каждым годом они будут все более расширяться.
Особый расцвет интроскопии наступит с освоением более длинноволнового излучения — сначала до 6—8 микрон, а затем и до 15—20 микрон. Если в настоящее время инфракрасная интроскопия применима лишь для изучения таких материалов, как кремний, то с освоением этого диапазона волн можно будет изучать многие интерметаллы и другие соединения, составляющие основу будущих полупроводниковых приборов. Много интересных возможностей применения инфракрасной интроскопии открывается и в области изучения полимеров.
По мере своего развития инфракрасная интроскопия, 191 несомненно, дойдет до использования и субмиллиметровых волн, представляющих промежуточный участок спектра между инфракрасными лучами и миллиметровыми волнами радиоизлучения. Простейшая модель такого интроскопа может быть осуществлена на основе использования ячеек Голея (как приемника, обладающего высокой чувствительностью в широком диапазоне волн) и соответствующей сканирующей системы, установленной в фокальной плоскости приемной оптики (т. е. там, где формируется невидимое изображение).
Я остановился на принципах инфракрасной интроскопии так подробно с единственной целью — показать, что она реальна уже сейчас, на современном этапе развития техники.
Если идти дальше, в сторону увеличения длин волн, то за субмиллиметровым диапазоном мы придем к миллиметровым, сантиметровым и даже многометровым радиоволнам. Оказывается, возможно осуществить видение и в этих диапазонах волн.
Радиолокация с ее многочисленными вариациями методов и приборов также относится к технике видения в невидимом. Однако связь ее с интроскопией может быть прослежена и с более раннего периода ее развития.
В 1934 г., например, еще не было понятия о внутривидении, тогда речь шла только об обнаружении воздушных целей ночью, на больших расстояниях, в облаках и т. п. Тогда не было еще даже самого понятия «интроскопия», однако статья, напечатанная мною в февральском номере сборника ПВО за 1934 г., заканчивалась так:
«Приподнимая завесу над вопросом о возможности обнаружения самолета с помощью электромагнитных волн, можно с уверенностью сказать, что проблема обнаружения самолетов на больших высотах (до 10 км и выше), на значительных дистанциях (порядка 50 км и больше), в условиях, не зависящих от атмосферного состояния и времени суток, на основе использования электромагнитных волн (ультракоротких и дециметровых) будет решена, и это явится одним из замечательнейших вкладов в науку и технику. Это явится доказательством того, что не пройдет и нескольких лет, как разница между электромагнетизмом и оптикой окончательно исчезнет и появится новое средство — электрооптика. Проблема видения ночью и в тумане очень близка к своему разрешению».
192
Из этого видно, что даже на той ранней стадии развития идеи радиолокации предполагалось, что она разовьется в систему электровидения, в электрооптику.
Теперь мы можем сказать, что такое направление действительно нашло свое отражение в развитии современной техники.
Независимо от конкретных способов решения задачи интроскопии использование различных видов излучений в широком спектральном составе связано с техникой преобразования этих излучений в оптически видимые изображения. Сейчас еще нет полностью отработанных систем преобразования всех видов проникающих излучений, но основы для их создания уже разработаны.