Много усилий было потрачено (да и сейчас, еще, наверное, тратится) на то, чтобы решить эту задачу технологическим приемом. Многие авторы, в том числе и я, на ранней стадии разработки этой проблемы, полагали: если бы удалось осуществить вакуумно-плотный спай пьезоэлектрической керамики (или какого-либо другого пьезоэлектрического материала) со стеклом, металлом и т. п., то можно было бы удовлетворить указанным выше двум условиям. А тогда оказалось бы возможным создать такой электронно-вакуумный прибор, в котором пьезоэлемент имел бы непосредственный контакт и с внешней средой, и с вакуумом, значит, его в этом случае можно было бы встроить непосредственно в стенку электронновакуумного прибора, он мог бы служить «входным окном» в прибор.
К сожалению, даже преодоление этих чрезвычайных технологических трудностей не открывает пути к созданию настоящего электронно-акустического преобразователя изображений.
Вакуум-плотное соединение пьезоэлектрических материалов (титанат и цирконат бария, кварц, сульфат аммония и др.) с металлом, керамикой и стеклом, т.е. с теми материалами, которые идут на изготовление электронновакуумных приборов, представляет огромные трудности: отсутствует согласованность по температурному коэффициенту расширения, нет взаимной смачиваемости, нет достаточной вакуумной плотности у самих пьезоэлектрических материалов типа титаната бария. Кроме того, для освобождения от газов любой электронно-вакуумный прибор в процессе своего изготовления подвергается нагреву до 400—500° С, пьезоэлемент же такого нагрева не допускает, так как при этом снимается его поляризация.
Имеется и ряд других технологических трудностей на этом пути.
Но самым главным препятствием надо считать высокое значение атмосферного давления, приходящегося на приемный пьезоэлемент. Судите сами. Толщина приемного пьезоэлемента должна быть согласована, как известно, с принимаемой волной — она должна быть равна половине длины волны. Из этого следует, что чем выше частота принимаемого ультразвукового излучения, тем тоньше должна быть приемная пьезоэлектрическая пластина. Но, будучи встроенной (допустим, что все технологические трудности преодолены) в качестве входного окна в стенку электронно-вакуумного прибора, пластина должна будет выдерживать на себе все атмосферное давление.
195
Схема преобразователя излучений
А если такой прибор предназначен для работы в подводных условиях и на большой глубине или в машинах высокого давления, то еще следует учесть и гидростатическое давление. На пьезоэлемент площадью всего 100 см2 будет приходиться давление в несколько сот килограммов! А так как толщина пьезоэлектрической пластины даже при низких мегагерцевых частотах составляет только доли миллиметра, то ни о какой механической прочности, об устойчивости ее указанному давлению говорить не приходится.
Это уже не техническое, а принципиальное препятствие, и преодолеть его нельзя даже самыми искусными технологическими приемами. Было время, когда создание электронно-акустического преобразователя считалось вообще невозможным.
И все же оказалось, что, несмотря на огромные трудности, решить задачу можно. Методологический анализ в сильной степени помог нам найти новый путь решения и преодолеть все перечисленные препятствия. Мы пришли к выводу, что прибор должен строиться не как акустический преобразователь, а как преобразователь внешнего электрического изображения — электрического рельефа, ибо при падении ультразвуковых волн на поверхность приемной пьезоэлектрической пластины кончается их существование как формы энергии. С обратной стороны пьезоэлектрической пластины мы имеем уже не ультразвук, а электрическое поле, и, следовательно, вся задача может быть сведена к преобразованию в видимое изображение именно этого электрического поля.
196
Такой подход к задаче коренным образом отличался от всех ранее известных подходов, и он дал возможность преодолеть как технологические, так и принципиальные трудности. Благодаря такому подходу к задаче дальнейшая практическая работа коллектива исследователей и разработчиков позволила решить проблему ультразвукового видения в инженерном смысле, и теперь мы можем сказать, что все, что 10—15 лет назад казалось непреодолимым на этом пути, решено. Внешний вид одного из таких преобразователей показан на вкладке.
Примечательно и то, что создание ультразвуковых преобразователей нового типа позволило найти способы преобразования и многих других видов излучения. Для ряда излучений роль пьезокерамики могут выполнять пироэлектрики.
В процессе постановки и развития проблемы интроскопии было найдено еще несколько новых оригинальных путей развития техники приема, преобразования и усиления распределенных потоков проникающих излучений.
На двух из них я хочу остановиться, так как они имеют принципиальное значение.
Перенесение фундаментальных принципов, успешно зарекомендовавших себя в какой-либо одной области знания, в другую, смежную ей область, всегда дает хорошие плоды. На синтезе двух дисциплин очень часто рождается принципиально новое.