На вопрос, каковы основные черты атомного века, связанные с атомной энергетикой, но выходящие за ее пределы, профессор Б.Г. Кузнецов отвечает, что для промышленной технологии и для связи “резонансный эффект” атомной энергетики состоит в широком использовании квантовой электроники и в особенности лазеров. Можно предположить, что в 2000 году, когда атомная энергетика станет основной составляющей баланса электроэнергии, квантовая электроника станет главным орудием технологического воздействия на материал, будет создавать сверхтвердые поверхности, преобразовывать структуру кристаллической решетки, а может быть обеспечивать также гораздо более экономичные методы преобразования и передачи энергии.
В своих прогнозах специалисты исходят из предположения, что стоимость тепла, полученного в высокотемпературных ядерных реакторах с газовым охлаждением, будет более низкая, чем стоимость тепла, получаемого при сжигании химического топлива, а стоимость электроэнергии ядерной энергетической установки (ЯЭУ) будет составлять все меньшую часть стоимости электроэнергии обычных электростанций, работающих на угле или мазуте.
Как показывают расчеты, преобразование тепловой энергии в электрическую, а затем снова в тепловую в металлургическом производстве приводит к потере 60–70% первичной энергии. Вот, чем оправдано стремление к непосредственному использованию выделяемой в атомном реакторе энергии в ее первичном виде. Препятствием служит то, что в реакторе с газовым охлаждением можно рассчитывать на температуру охладителя 500–750°С, что весьма ограничивает его применение в металлургии. Для восстановления железа температура газа должна быть не ниже 1000°С.
Последние достижения в области разработки высокотемпературных реакторов в СССР и за рубежом позволяют уже в настоящее время расширить диапазон температур, получаемых в результате применения ЯЭУ, до 1200–1600°С. Не исключается в дальнейшем возможность применения в реакторе такого типа в качестве размножителя ядерного топлива с временем удвоения около трех лет, что создает новые предпосылки для снижения стоимости тепла и электроэнергии, получаемых с ЯЭУ.
В ФРГ испытывался небольшой опытный реактор, в котором для охлаждения использовался гелий при давлении 3–4 МПа и достигалась температура охладителя до 850°С. Была даже достигнута кратковременная пиковая температура охладителя 1000°С и предполагают, что можно ее поднять до 1200°С и даже до температур, превосходящих температуру плавления чугуна и стали.
Наиболее удовлетворительные результаты возможны в случае, когда атомную энергию удастся применить в виде тепловой и одновременно электрической, получаемой от использования в тепловых процессах ресурсов энергии.
В металлургии тепло охлаждающего реактор газа может быть использовано для получения восстановительной газовой смеси газификацией твердого топлива или конвертированием (изменение состава) природного газа либо жидкого топлива, а также как источник тепла для производства губчатого железа, агломерации руд, производства окатышей, нагрева дутья. Электроэнергию, полученную в реакторе, можно использовать в электропечном производстве ферросплавов или для получения стали из губчатого железа, производства кислорода и восстановителей.
В промышленно развитых странах — СССР, Японии, ФРГ, Англии — в разработанных проектах рассматривают два основных технологических комплекса с применением ЯЭУ: доменная печь — конвертор; установка прямого восстановления железа — электропечь.
В одном из вариантов компоновки ядерного реактора с доменной печью для приготовления восстановительного газа рекомендуют использовать доменный газ, который поступает в теплообменник и нагревается до 1300°С теплом гелия, охлаждающего ядерный реактор. Из теплообменника охлажденный гелий возвращается в ядерный реактор, а нагретый доменный газ направляется в камеру приготовления восстановительного газа. Здесь доменный газ проходит через слой низкокачественного угля. В результате реакции образуется восстановительный газ, вдуваемый затем в доменную печь. Предполагают, что один реактор сможет при этом обеспечить теплом 2–3 доменные печи. Вырабатываемую им электроэнергию можно будет использовать на том же металлургическом заводе для производства кислорода, в электропечах, прокатных цехах. Применение восстановительного газа, нагретого теплом ядерного реактора до высокой температуры, позволит, по предварительным расчетам, снизить наполовину удельный расход кокса в доменной печи.