Читаем Занимательно о химии полностью

Здесь-то и пришла на помощь людям химия. Прежде всего химики задались вопросом: а почему каучук так эластичен? Долго пришлось им исследовать «слезы гевеи», и, наконец, разгадку нашли. Оказалось, что молекулы каучука построены очень своеобразно. Они состоят из большого числа повторяющихся одинаковых звеньев и образуют гигантские цепи. Конечно, такая «длинная» молекула, содержащая около пятнадцати тысяч звеньев, способна изгибаться во всех направлениях, она и обладает эластичностью. Звеном этой цепи оказался углерод, изопрен C5H8, а структурную его формулу можно изобразить так:

Правильнее сказать, что изопрен как бы представляет собой исходный природный мономер. В процессе же полимеризации молекула изопрена несколько изменяется: разрываются двойные связи между атомами углерода. За счет таких освобождающихся связей отдельные звенья соединяются в гигантскую молекулу каучука.

Проблема получения искусственного каучука уже давно волновала ученых и инженеров.

Казалось бы, дело не ахти какое хитрое. Сначала получить изопрен. Потом заставить его полимеризоваться. Связать отдельные изопреновые звенья в длинные и гибкие цепи искусственного каучука.

Казалось одно, оказалось другое. Не без труда химики синтезировали изопрен, а чуть дошло до его полимеризации, каучук не получился. Звенья связывались между собой, но как попало, а не в каком-то определенном порядке. И создавались искусственные продукты, чем-то похожие на каучук, но во многом и отличные от него.

И химикам пришлось изобретать способы заставить изопреновые звенья свиваться в цепь в нужном направлении.

Первый в мире промышленный искусственный каучук был получен в Советском Союзе. Академик Сергей Васильевич Лебедев выбрал для этого другое вещество — бутадиен:

Очень похожее по составу и строению на изопрен, но полимеризацией бутадиена легче управлять.

Сейчас известно довольно большое количество искусственных каучуков (в отличие от натурального их теперь часто называют эластомерами).

Сам природный каучук и изделия из него обладают существенными недостатками. Так, он сильно набухает в маслах и жирах, малостоек к действию многих окислителей, в частности озона, следы которого всегда присутствуют в воздухе. При изготовлении изделий из природного каучука его приходится вулканизовать, то есть подвергать действию высокой температуры в присутствии серы. Именно так превращают каучук в резину или эбонит. При работе изделий из природного каучука (к примеру, автомобильных шин) выделяется значительное количество тепла, что приводит к их старению, быстрому изнашиванию.

Вот почему ученым пришлось позаботиться о создании новых, синтетических каучуков, которые обладали бы более совершенными свойствами. Есть, например, семейство каучуков под названием «буна». Оно происходит от начальных букв двух слов: «бутадиен» и «натрий». (Натрий играет роль катализатора при полимеризации.) Некоторые эластомеры из этого семейства оказались превосходными. Они пошли в основном на изготовление автомобильных покрышек.

Особенно большое значение приобрел так называемый бутилкаучук, который получают совместной полимеризацией изобутилена и изопрена. Во-первых, он оказался самым дешевым. А во-вторых, на него, в отличие от природного каучука, почти не действует озон. Кроме этого, вулканизаты бутилкаучука, который сейчас широко применяется при изготовлении камер, обладают в десять раз большей непроницаемостью для воздуха по сравнению с вулканизатами природного продукта.

Очень своеобразны так называемые полиуретановые каучуки. Обладая высокой прочностью на разрыв и растяжение, они почти не подвержены старению. Из полиуретановых эластомеров готовят так называемый пенистый каучук, пригодный для обивки сидений.

В последнее десятилетие разработаны каучуки, о которых раньше ученые и не помышляли. И прежде всего эластомеры, на основе кремнийорганических и фтороуглеродистых соединений. Эти эластомеры отличаются высокой термостойкостью, вдвое превосходящей термостойкость природного каучука. Они устойчивы к озону, а каучук на основе фтороуглеродистых соединений не боится даже дымящих серной и азотной кислот.

Но и это еще не все. Совсем недавно получены так называемые карбоксилсодержащие каучуки — сополимеры бутадиена и органических кислот. Они оказались исключительно прочными на растяжение.

Можно сказать, что и здесь природа уступила свое первенство материалам, созданным человеком.

Алмазное сердце и шкура носорога

Есть в органической химии класс соединений, получивший название углеводородов. Это действительно углеводороды — в их молекулах, кроме атомов углерода и водорода, больше ничего нет. Типичные наиболее известные их представители — метан (он составляет примерно 95 процентов природного газа), а из жидких углеводородов — нефть, из которой получают различные сорта бензинов, смазочных масел и много других ценных продуктов.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука