Читаем Занимательная микроэлектроника полностью

Приведем пример того, как можно подключить шкальный индикатор к нашему измерителю с помощью микросхемы К155ИД11. Нашей целью будет индикация атмосферного давления в расчете на шкалу с 15 градациями (16 состояниями) в диапазоне от 710 до 785 мм рт. ст. (т. е. по 5 мм рт. ст. на одну градацию шкалы). При этом состоянию 710 и менее должны соответствовать все погашенные LED, от 711 до 715 — один горящий, от 716 до 720 — два горящих и т. д.

Схема на рис. 19.4 составлена в предположении, что от цифровой индикации мы отказались, и порт С, занятый ранее сегментами, у нас освободился. Младшие разряды этого порта мы и задействуем для управления линейкой светодиодов. Остальные соединения на схеме не показаны (см. рис. 15.2). Ради простоты индикацию температуры опустим. Вывод Е (разрешения) микросхем управляется старшим разрядом четырехбитового числа с вывода РСЗ. Логика К155ИД11 такова, что если на Е уровень логического нуля, то работа микросхемы DD2 запрещена, если «1»— запрещается работа микросхемы DD3. Так как во втором случае на выходе Р верхней микросхемы уровень логического нуля, то нижняя микросхема зажжет все светодиоды. Ограничительных резисторов для светодиодов не требуется, они встроены в микросхему, хотя яркость в этом случае может быть непредсказуемой (а вот К1003ПП1 «умеет», в том числе, управлять яркостью).

Рис. 19.4.Схема шкальной индикации для измерителя давления и температуры

Программу придется переделать таким образом. Расчеты физических величин нам уже не требуются, но вот преобразование масштабов провести придется. Потому на подготовительном этапе нужно выяснить значение коэффициентов К и Z таких, чтобы по уравнению зависимости выходного кода от значений, прочитанных из АЦП, приведенному в главе 15, у нас значение выходного кода, равного нулю, соответствовало 710 мм рт. ст. Таким образом, коэффициент Z, который нужно вычесть из кода АЦП, будет равен значению кода при 710 мм рт. ст., или, как несложно рассчитать, примерно 840 (с учетом того, что датчик работает не с нуля давления, см. главу 15).

Значение же, соответствующее 785 мм рт. ст., должно соответствовать какому-нибудь «круглому» двоичному числу (не очень важно, какому, т. к. мы потом его все равно урежем до 4 бит). Из характеристик датчика мы знаем, что максимальная шкала АЦП в 10 бит соответствует давлению около 850 мм рт. ст. Нас же интересует шкала всего в 75 мм (от 710 до 785), что составит около 90 единиц кода. Потому мы смело можем выбрать, например, 128 для верхнего предела шкалы (что соответствует 7 битам). Тогда коэффициент К (который ранее составлял 0,895 мм рт. ст. на единицу кода), теперь будет примерно 128/90 = 1,422. Оба коэффициента, естественно, должны уточняться при калибровке.

Сама процедура расчета не нуждается в переделке (меняются только значения коэффициентов, остальное можно оставить, как есть, хотя если внимательно ее рассмотрите, то увидите, что есть резервы для сокращения необходимых ресурсов, например, задействованных регистров). Единственное, что следует учесть— вычисленные значения хранятся в регистрах AregH: AregL (см. Приложение 5), но 7-битовый результат, конечно окажется только в регистре AregL, а регистр АregH всегда будет равен нулю. После расчета, вместо преобразования В двоично-десятичный КОД (rcall bin2BCD16), мы должны записать:

lsr AregL

lsr AregL

lsr AregL  ;теперь результат усечен до 4 бит

in temp.PortC  ;значение разрядов PortC в temp

cbr temp,15  ;обнуляем младшие 4 бита

ori temp,AregL  ;устанавливаем младшие 4 бита

out PortC,temp  ;выводим

Здесь операции очистки младших битов и сохранения старших требуются для того, чтобы не вмешиваться в процессы, которыми (предположительно) могут управлять старшие биты порта С. В остальном программу читатель может доделать самостоятельно — она упростится, даже если ввести еще индикацию температуры. При полном отказе от цифровой индикации исчезнет необходимость в громоздкой процедуре управления разрядами (индикация становится статической), и также сократится число необходимых ячеек в SRAM — ясно, что хранить четырех- и даже восьмибитовые значения величин ни к чему. А в физические величины, если потребуется, исходные значения параметров можно пересчитать и в компьютере, сохраняя их в энергонезависимой памяти.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника