Булат — это углеродистая заэвтектоидная сталь. Булат не только углеродистая сталь, булат — сталь сверхуглеродистая, близкая по составу к чугуну. Булат не только сверхуглеродистая сталь, булат — сталь особо чистая, без посторонних примесей. И наконец, булат — высокоуглеродистая сталь, обладающая неравновесной структурой, с ярко выраженной макро- и микронеоднородностью. Булат — слоистая сталь. Очень твердые слои с высоким содержанием углерода чередуются в булате со слоями, мало насыщенными углеродом и поэтому пластичными. В процессе ковки все слои переплетаются, образуя характерный естественный рисунок. Булат — узорчатая сталь. Структура булата после применения специальных методов ковки, термомеханической обработки и отделки обеспечивает ему необычайно высокие механические свойства. Булат — сталь, обладающая одновременно высокой твердостью, прочностью, вязкостью и упругостью. Чередование мягких и очень твердых участков на лезвии клинка превращает его в микропилу и обеспечивает самозатачиваемость. Булат — сталь, обеспечивающая необычайную остроту лезвия клинка и его самозатачиваемость. Таким образом, в понятие «булат» вкладывается целый ряд характерных особенностей этой замечательной стали.
ГЛАВА ПЯТАЯ
СТАРЫЕ ЗНАКОМЫЕ
Пусть человек пользуется прошедшими веками как материалом, на котором возрастает будущее…
Наследники булата
Холодное оружие давно потеряло ценность, а с ним ушли в прошлое и булаты. Еще раз подчеркнем: в сравнении с высокопрочными и вязкими легированными сталями булат не представляет ничего выдающегося.
Кроме того, для всех рассмотренных способов производства булатов характерна сложная и длительная технология, которая к тому же не позволяет получать изделия точных размеров и формы. Для требуемой макроструктуры (узора) булата и придания изделию нужных размеров и формы необходима дополнительная механическая обработка. Практическая невозможность изготовления слитков булата массой более 30–50 кг без существенного нарушения требуемой физической неоднородности делает процессы приготовления стали, аналогичной древнему булату, очень дорогими и поэтому экономически невыгодными для современного производства.
Современная техника нашла много других способов выплавки сталей и сплавов. Легированные стали с широким диапазоном изменения физических и механических свойств получают по сравнительно простой технологии в многотонных сталеплавильных агрегатах. К булату остался сегодня только исторический интерес. Но идеи, заложенные в выборе сходных материалов для получения булата, в способах его производства, в его строении и свойствах, живут до сих пор. То, к чему древние ремесленники пришли эмпирически и чего П. П. Аносов добился кропотливым и упорным трудом, сегодня служит металлургам научной основой для получения материалов с высокими физико-механическими и служебными характеристиками.
Сначала на базе исследований булата были разработаны многие классические идеи металлографии стали и сплавов; а затем — и приемы его приготовления, и высокие свойства его необыкновенной структуры начали широко использоваться при разработке самых различных технологических процессов получения сталей, сплавов и композиционных материалов.
В проблемной лаборатории Донецкого политехнического института некоторое время назад появился удивительный нож. Для того чтобы заточить его лезвие, понадобился алмазный круг, обычный наждак не брал. После рубки ножом толстых гвоздей на его поверхности не оставалось даже царапины. Но самое удивительное, что этот нож, так же как и булат, был сделан не из легированной стали, а из простого сплава железо — углерод.
Впрочем, сплав был не такой уже простой, он содержал 3,5 % углерода. По составу это был чугун… Несмотря на это, сплав отлично ковался и прокатывался. Резцы и фрезы из него неплохо обрабатывали сталь и не уступали по прочности инструменту из легированной инструментальной стали. Как тут не вспомнить легендарные рельсы из Катав-Ивановска, которые так помогли уральцам в тяжелые времена Отечественной войны!
Только теперь свойства чудо-ножа можно легко научно объяснить. Нож был приготовлен из сплава, специально очищенного от вредных примесей и мельчайших частиц неметаллических включений. А в этих условиях карбидам железа выпадать трудно.
Электронно-микроскопический и масс-спектрографический анализы показали, что углерод в сплаве находится в необычном аморфном состоянии, при котором он, увеличивая прочность и твердость металла, не делает его хрупким. Предвидение П. П. Аносова о различном состоянии углерода в железе и влиянии этого состояния на качество стали научно подтвердилось.