Читаем Загадка булатного узора полностью

Однако публикации несколько отставали от практики. Еще в 1619 году англичанин Дод Додлей получил королевский патент на способ плавки железной руды и производства из нее чугунного литья или брусков путем применения каменного угля в печах с «раздувательными» мехами. Свое изобретение Додлей сохранял в тайне всю свою долгую жизнь.

Прошло около ста лет, прежде чем другой английский металлург Абрахам Дерби-старший взялся за решение этой трудной задачи. В 1713 году он нашел способ очистки каменного угля от вредных примесей: он стал обжигать его в кучах, примерно таких же, какие угольщики использовали для приготовления древесного угля Но для воспламенения каменного угля понадобилось сильное воздушное дутье. Такой техникой Дерби старший не располагал, поэтому он применил каменный уголь в доменной плавке лишь частично.

В 1735 году его сын Абрахам Дерби-средний использовал для доменного дутья паровую машину и получил первый чугун, сделанный на каменном угле. Качество этого чугуна было значительно более высоким. Паровые воздуходувки давали небывалый жар, полыхающий в домне. Вагонетки едва успевали подавать руду и уголь на колошник доменной печи. И Дерби решает заменить деревянные рельсы, по которым катились вагонетки, чугунными. Эффект даже для него оказался неожиданным: по чугунным рельсам лошадь везла в 7 раз больше груза, чем по деревянным! Так металлурги подарили миру «чугунку» — первую железную дорогу.

Применение каменного угля и первых воздуходувок резко увеличило производительность доменных печей. В 1779 году Абрахам Дерби-младший строит на реке Северн первый в мире мост из литых чугунных деталей. С тех пор чугунные мосты прочно вошли в жизнь.

Все же изобретение Дерби, распространяется медленно. Обожженный каменный уголь содержал много серы, и использовать его в кричном способе производства железа из чугуна было нельзя: металлурги знали, что «сера своим флогистоном может сжечь железо», то есть сделать его хрупким. В 1771 году М. Гитон получает из каменного угля кокс со сравнительно низким содержанием серы и выплавляет на нем чугун с достаточно высокими свойствами. В 1784 году Генри Корт показывает, что для получения из чугуна чистого в отношении примесей серы железа надо организовать процесс так, чтобы чугун не соприкасался с коксом во время плавки.

После долгих поисков разрабатывается процесс пудлингования. Этот процесс позволял получать крупные железные крицы в пламенных (отражательных) печах, отапливаемых коксом. В такой печи пламя отражается от свода и сам кокс с металлом не контактирует. В результате взаимодействия жидкого чугуна с окислительным шлаком и кислородом воздуха на поду отражательной печи получали тестообразное железо или низкоуглеродистую сталь, которую накатывали на ломик и вытаскивали из печи. Этот продукт также называли крицей. Этим и завершился первый значительный подъем в металлургии на рубеже XVIII и XIX веков.

Часовая производительность сыродутного процесса была 0,5–0,6 кг железа, кричного — 50–60, а пудлинговой печи — 140 кг сварочного железа. Производительность пудлинговых печей ограничивалась физическими возможностями обслуживающих их рабочих.

Пудлинговое железо, получаемое в больших количествах, начинает широко применяться для строительства машин, судов, мостов и других строительных сооружений. Но продуктом пудлингового процесса по-прежнему оставалась тестообразная крица. Следовательно, условия для получения литого булата в Европе пока не существовали. И долго бы еще не существовали, если бы в Англии не произошло событие, которое история науки часто забывает отметить должным образом.

В середине XVIII века в городе Шеффилде славился изделиями часовых дел мастер Бенджамин Гентсман. И знал этот часовщик, что для сердца часов — пружины — нужна очень чистая и однородная по составу сталь. Шведская цементованная сталь, получавшаяся науглероживанием сварочного железа, этим требованиям не удовлетворяла (теперь мы знаем, что углерод неравномерно распространялся в ее объеме). И Гентсман понял, что для равномерного распределения «цемента» (углерода) необходимо растворить его в жидком металле. Так часовщик подошел к тигельному процессу производства стали. Он переплавил в глиняном тигле цементованное железо, разлил жидкую сталь в чугунные формы, проковал и получил углеродистую сталь очень высокого качества. Тигельным способом удавалось получать сталь с содержанием углерода 1,0–2,0 %.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука