Читаем Windows® Internals, Sixth Edition, Part 2 полностью

Each process would still maintain its private memory areas in which to store private data, but the DLL code and unmodified data pages could be shared without harm. As we’ll explain later, this kind of sharing happens automatically because the code pages in executable images (.exe and .dll files, and several other types like screen savers (.scr), which are essentially DLLs under other names) are mapped as execute-only and writable pages are mapped as copy-on-write. (See the section Copy-on-Write for more information.)

The underlying primitives in the memory manager used to implement shared memory are called section objects, which are exposed as file mapping objects in the Windows API. The internal structure and implementation of section objects are described in the section Section Objects later in this chapter.

This fundamental primitive in the memory manager is used to map virtual addresses, whether in main memory, in the page file, or in some other file that an application wants to access as if it were in memory. A section can be opened by one process or by many; in other words, section objects don’t necessarily equate to shared memory.

Figure 10-1. Sharing memory between processes

A section object can be connected to an open file on disk (called a mapped file) or to committed memory (to provide shared memory). Sections mapped to committed memory are called page-file-backed sections because the pages are written to the paging file (as opposed to a mapped file) if demands on physical memory require it. (Because Windows can run with no paging file, page-file-backed sections might in fact be “backed” only by physical memory.) As with any other empty page that is made visible to user mode (such as private committed pages), shared committed pages are always zero-filled when they are first accessed to ensure that no sensitive data is ever leaked.

To create a section object, call the Windows CreateFileMapping or CreateFileMappingNuma function, specifying the file handle to map it to (or INVALID_HANDLE_VALUE for a page-file-backed section) and optionally a name and security descriptor. If the section has a name, other processes can open it with OpenFileMapping. Or you can grant access to section objects through either handle inheritance (by specifying that the handle be inheritable when opening or creating the handle) or handle duplication (by using DuplicateHandle). Device drivers can also manipulate section objects with the ZwOpenSection, ZwMapViewOfSection, and ZwUnmapViewOfSection functions.

A section object can refer to files that are much larger than can fit in the address space of a process. (If the paging file backs a section object, sufficient space must exist in the paging file and/or RAM to contain it.) To access a very large section object, a process can map only the portion of the section object that it requires (called a view of the section) by calling the MapViewOfFile, MapViewOfFileEx, or MapViewOfFileExNuma function and then specifying the range to map. Mapping views permits processes to conserve address space because only the views of the section object needed at the time must be mapped into memory.

Windows applications can use mapped files to conveniently perform I/O to files by simply making them appear in their address space. User applications aren’t the only consumers of section objects: the image loader uses section objects to map executable images, DLLs, and device drivers into memory, and the cache manager uses them to access data in cached files. (For information on how the cache manager integrates with the memory manager, see Chapter 11.) The implementation of shared memory sections, both in terms of address translation and the internal data structures, is explained later in this chapter.

EXPERIMENT: Viewing Memory Mapped Files

You can list the memory mapped files in a process by using Process Explorer from Sysinternals. To view the memory mapped files by using Process Explorer, configure the lower pane to show the DLL view. (Click on View, Lower Pane View, DLLs.) Note that this is more than just a list of DLLs—it represents all memory mapped files in the process address space. Some of these are DLLs, one is the image file (EXE) being run, and additional entries might represent memory mapped data files.

For example, the following display from Process Explorer shows a WinDbg process using several different memory mappings to access the memory dump file being examined. Like most Windows programs, it (or one of the Windows DLLs it is using) is also using memory mapping to access a Windows data file called Locale.nls, which is part of the internationalization support in Windows.

Перейти на страницу:

Похожие книги