Читаем Windows® Internals, Sixth Edition, Part 2 полностью

Now that we’ve described the basic components of the virtual address space in Windows, let’s examine the specific layout on the x86, IA64, and x64 platforms.

x86 Address Space Layouts

By default, each user process on 32-bit versions of Windows has a 2-GB private address space; the operating system takes the remaining 2 GB. However, the system can be configured with the increase-userva BCD boot option to permit user address spaces up to 3 GB. Two possible address space layouts are shown in Figure 10-8.

The ability for a 32-bit process to grow beyond 2 GB was added to accommodate the need for 32-bit applications to keep more data in memory than could be done with a 2-GB address space. Of course, 64-bit systems provide a much larger address space.

Figure 10-8. x86 virtual address space layouts

For a process to grow beyond 2 GB of address space, the image file must have the IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in the image header. Otherwise, Windows reserves the additional address space for that process so that the application won’t see virtual addresses greater than 0x7FFFFFFF. Access to the additional virtual memory is opt-in because some applications have assumed that they’d be given at most 2 GB of the address space. Since the high bit of a pointer referencing an address below 2 GB is always zero, these applications would use the high bit in their pointers as a flag for their own data, clearing it, of course, before referencing the data. If they ran with a 3-GB address space, they would inadvertently truncate pointers that have values greater than 2 GB, causing program errors, including possible data corruption. You set this flag by specifying the linker flag /LARGEADDRESSAWARE when building the executable. This flag has no effect when running the application on a system with a 2-GB user address space.

Several system images are marked as large address space aware so that they can take advantage of systems running with large process address spaces. These include:

Lsass.exe The Local Security Authority Subsystem

Inetinfo.exe Internet Information Server

Chkdsk.exe The Check Disk utility

Smss.exe The Session Manager

Dllhst3g.exe A special version of Dllhost.exe (for COM+ applications)

Dispdiag.exe The display diagnostic dump utility

Esentutl.exe The Active Directory Database Utility tool

EXPERIMENT: Checking If an Application Is Large Address Aware

You can use the Dumpbin utility from the Windows SDK to check other executables to see if they support large address spaces. Use the /HEADERS flag to display the results. Here’s a sample output of Dumpbin on the Session Manager:C:\Program Files\Microsoft SDKs\Windows\v7.1>dumpbin /headers c:\windows\system32\smss.exe Microsoft (R) COFF/PE Dumper Version 10.00.40219.01 Copyright (C) Microsoft Corporation. All rights reserved. Dump of file c:\windows\system32\smss.exe PE signature found File Type: EXECUTABLE IMAGE FILE HEADER VALUES 8664 machine (x64) 5 number of sections 4A5BC116 time date stamp Mon Jul 13 16:19:50 2009 0 file pointer to symbol table 0 number of symbols F0 size of optional header 22 characteristics Executable Application can handle large (>2GB) addresses

Finally, because memory allocations using VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma start with low virtual addresses and grow higher by default, unless a process allocates a lot of virtual memory or it has a very fragmented virtual address space, it will never get back very high virtual addresses. Therefore, for testing purposes, you can force memory allocations to start from high addresses by using the MEM_TOP_DOWN flag or by adding a DWORD registry value, HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\AllocationPreference, and setting it to 0x100000.

Figure 10-9 shows two screen shots of the TestLimit utility (shown in previous experiments) leaking memory on a 32-bit Windows machine booted with and without the increaseuserva option set to 3 GB.

Note that in the second screen shot, TestLimit was able to leak almost 3 GB, as expected. This is only possible because TestLimit was linked with /LARGEADDRESSAWARE. Had it not been, the results would have been essentially the same as on the system booted without increaseuserva.

Figure 10-9. TestLimit leaking memory on a 32-bit Windows computer, with and without increaseuserva set to 3 GB

x86 System Address Space Layout

Перейти на страницу:

Похожие книги