A process can also lock the entire heap and prevent other threads from performing heap operations for operations that would require consistent states across multiple heap calls. For instance, enumerating the heap blocks in a heap with the Windows function
If heap synchronization is enabled, there is one lock per heap that protects all internal heap structures. In heavily multithreaded applications (especially when running on multiprocessor systems), the heap lock might become a significant contention point. In that case, performance might be improved by enabling the front-end heap, described in an upcoming section.
The Low Fragmentation Heap
Many applications running in Windows have relatively small heap memory usage (usually less than 1 MB). For this class of applications, the heap manager’s best-fit policy helps keep a low memory footprint for each process. However, this strategy does not scale for large processes and multiprocessor machines. In these cases, memory available for heap usage might be reduced as a result of heap fragmentation. Performance can suffer in scenarios where only certain sizes are often used concurrently from different threads scheduled to run on different processors. This happens because several processors need to modify the same memory location (for example, the head of the look-aside list for that particular size) at the same time, thus causing significant contention for the corresponding cache line.
The LFH avoids fragmentation by managing allocated blocks in predetermined different block-size ranges called buckets. When a process allocates memory from the heap, the LFH chooses the bucket that maps to the smallest block large enough to hold the required size. (The smallest block is 8 bytes.) The first bucket is used for allocations between 1 and 8 bytes, the second for allocations between 9 and 16 bytes, and so on, until the thirty-second bucket, which is used for allocations between 249 and 256 bytes, followed by the thirty-third bucket, which is used for allocations between 257 and 272 bytes, and so on. Finally, the one hundred twenty-eighth bucket, which is the last, is used for allocations between 15,873 and 16,384 bytes. (This is known as a
Buckets
Granularity
Range
1–32
8
1–256
33–48
16
257–512
49–64
32
513–1,024
65–80
64
1,025–2,048
81–96
128
2,049–4,096
97–112
256
4,097–8,194
113–128
512
8,195–16,384
The LFH addresses these issues by using the core heap manager and look-aside lists. The Windows heap manager implements an automatic tuning algorithm that can enable the LFH by default under certain conditions, such as lock contention or the presence of popular size allocations that have shown better performance with the LFH enabled. For large heaps, a significant percentage of allocations is frequently grouped in a relatively small number of buckets of certain sizes. The allocation strategy used by LFH is to optimize the usage for these patterns by efficiently handling same-size blocks.
To address scalability, the LFH expands the frequently accessed internal structures to a number of slots that is two times larger than the current number of processors on the machine. The assignment of threads to these slots is done by an LFH component called the
Even if the LFH is enabled as a front-end heap, the less frequent allocation sizes may still continue to use the core heap functions to allocate memory, while the most popular allocation classes will be performed from the LFH. The LFH can also be disabled by using the
Heap Security Features