Finally, if the system is in OptIn or OptOut mode and executing a 32-bit process, the SetProcessDEPPolicy function allows a process to dynamically disable DEP or to permanently enable it. (Once enabled through this API, DEP cannot be disabled programmatically for the lifetime of the process.) This function can also be used to dynamically disable ATL thunk emulation in case the image wasn’t compiled with the /NXCOMPAT flag. On 64-bit processes or systems booted with AlwaysOff or AlwaysOn, the function always returns a failure. The GetProcessDEPPolicy function returns the 32-bit per-process DEP policy (it fails on 64-bit systems, where the policy is always the same—enabled), while GetSystemDEPPolicy can be used to return a value corresponding to the policies in Table 10-3.
Software Data Execution Prevention
For older processors that do not support hardware no execute protection, Windows supports limited software data execution prevention (DEP). One aspect of software DEP reduces exploits of the exception handling mechanism in Windows. (See Chapter 3 in Part 1 for a description of structured exception handling.) If the program’s image files are built with safe structured exception handling (a feature in the Microsoft Visual C++ compiler that is enabled with the /SAFESEH flag), before an exception is dispatched, the system verifies that the exception handler is registered in the function table (built by the compiler) located within the image file.
The previous mechanism depends on the program’s image files being built with safe structured exception handling. If they are not, software DEP guards against overwrites of the structured exception handling chain on the stack in x86 processes via a mechanism known as Structured Exception Handler Overwrite Protection (SEHOP). A new symbolic exception registration record is added on the stack when a thread first begins user-mode execution. The normal exception registration chain will lead to this record. When an exception occurs, the exception dispatcher will first walk the list of exception handler registration records to ensure that the chain leads to this symbolic record. If it does not, the exception chain must have been corrupted (either accidentally or deliberately), and the exception dispatcher will simply terminate the process without calling any of the exception handlers described on the stack. Address Space Layout Randomization (ASLR) contributes to the robustness of this method by making it more difficult for attacking code to know the location of the function pointed to by the symbolic exception registration record, and so to construct a fake symbolic record of its own.
To further validate the SEH handler when /SAFESEH is not present, a mechanism called Image Dispatch Mitigation ensures that the SEH handler is located within the same image section as the function that raised an exception, which is normally the case for most programs (although not necessarily, since some DLLs might have exception handlers that were set up by the main executable, which is why this mitigation is off by default). Finally, Executable Dispatch Mitigation further makes sure that the SEH handler is located within an executable page—a less strong requirement than Image Dispatch Mitigation, but one with fewer compatibility issues.
Two other methods for software DEP that the system implements are stack cookies and pointer encoding. The first relies on the compiler to insert special code at the beginning and end of each potentially exploitable function. The code saves a special numerical value (the cookie) on the stack on entry and validates the cookie’s value before returning to the caller saved on the stack (which would have now been corrupted to point to a piece of malicious code). If the cookie value is mismatched, the application is terminated and not allowed to continue executing. The cookie value is computed for each boot when executing the first user-mode thread, and it is saved in the KUSER_SHARED_DATA structure. The image loader reads this value and initializes it when a process starts executing in user mode. (See Chapter 3 in Part 1 for more information on the shared data section and the image loader.)