Unlike traditional VPN products, remote systems using DA to access a corporate network are always visible and manageable—just as if the machine was directly plugged into the corporate network. The corporate IT department can manage remote systems by updating Group Policy settings or push software updates at any time the remote systems are attached to the Internet. The IT department can also specify which corporate network resources (applications, servers, subnets, and so on) can be accessed by a user or remote system that is connected using DA.
For enhanced security, Authentication Mechanism Assurance (described in Chapter 6) can be required on DA clients. This requires two-factor authentication (for example, a smart card or other hardware token) to log on or unlock a system.
As shown in Figure 7-54, there are many mechanisms available for connecting a DA client to a corporate network: IPv6, Intra-Site Automatic Tunnel Addressing Protocol (ISATAP), IPv4 encrypted with IPsec, 6to4 tunnel, or Teredo. In all cases, a connection is made between the remote client and a DA server. This server provides Denial of Service (DoS) protection by rate-limiting connection negotiation traffic used to connect to it, and it acts as an IPv6 tunnel gateway between the remote client and the corporate network. The DA server also functions as an IPv6-based IPsec security gateway, similar to a VPN server or VPN client access concentrator, to control access to the corporate network
A client typically has two IPv6 tunnels to the DA server: an
DA also works with NAP. In this case, a Health Registration Authority (HRA) server is placed outside the corporate firewall (often referred to as the DMZ, or DeMilitarized Zone). The client is configured with the name of the HRA (which can be resolved to an IP address using a public DNS server). When the client boots, it contacts the HRA and sends its Statement of Health. If the client is not healthy, it must access remediation servers, which are also in the DMZ. Once the client is healthy, it obtains a health certificate that can then be used with IPsec to connect to the DA server.
Conclusion
The Windows network architecture provides a flexible infrastructure for networking APIs, network protocol drivers, and network adapter drivers. The Windows networking architecture takes advantage of I/O layering to give networking support the extensibility to evolve as computer networking evolves. Similarly, new APIs can interface to existing Windows protocol drivers. Finally, the range of networking APIs implemented on Windows affords network application developers a range of possible implementations, each with different programming models and protocol support.
Appendix A. About the Authors
Mark Russinovich is a Technical Fellow in Windows Azure at Microsoft, working on Microsoft’s cloud operating system. He is the author of the cyberthriller
David Solomon, president of David Solomon Expert Seminars (
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии