Читаем What a Fish Knows полностью

Мы можем ожидать, что умвельты рыб будут отличаться от наших, поскольку они развивались в воде, а не в воздухе. Но эволюция - консервативный конструктор, склонный держаться за изящную идею. В качестве примера можно привести глаза рыб. За исключением очевидного отсутствия век, глаза рыб похожи на наши собственные. Как и глазные яблоки большинства позвоночных, включая человека, рыбьи глазные яблоки обслуживаются тремя парами мышц, которые поворачивают глаз по всем осям, а также суспензорной связкой и втягивающими мышцами, которые помогают рыбе сосредоточиться на пузырьках, поднимающихся из аэратора, или на вертикальном существе, пристально смотрящем с другой стороны стакана. Будучи эволюционными предшественниками наземных животных, ранние рыбы заложили эту систему зрения. Заметить вращающиеся движения глаз большинства мелких рыб нелегко, но при следующем посещении аквариума вы сможете заметить движения глаз у более крупных особей, когда они переводят взгляд на разные части окружающей среды.

Благодаря сферической линзе с высоким коэффициентом преломления, который определяется как отношение скорости света через среду (в данном случае линзу) к его скорости в вакууме, рыба может видеть под водой так же четко, как мы видим в воздухе. Разумеется, у рыб нет ни слезных желез, ни слезных протоков, ни век, чтобы увлажнять нежную поверхность глаз; они им и не нужны, поскольку глазное яблоко постоянно поддерживается в чистоте и влажности водой, в которой они плавают.

Морские коньки, бленни, бычки и камбалы еще больше усовершенствовали свою глазную мускулатуру, чтобы каждый глаз мог вращаться независимо, как у ящериц-хамелеонов. Из этого я могу сделать вывод, что существо, наделенное такими возможностями, способно обрабатывать два зрительных поля одновременно. Это кажется столь радикально отличным от того, что делает человеческий мозг, и когда я пытаюсь представить себе ментальный опыт двух независимых зрительных полей, каждое из которых находится под моим сознательным контролем, это выходит за рамки моего умвельта не меньше, чем попытка представить себе предел Вселенной. Хотя группа ученых из Израиля и Италии смоделировала зрительную систему хамелеонов, создав "роботизированную голову" с двумя независимо движущимися камерами, мне не известно о попытках понять, как их обрабатывает один мозг. Мыслит ли хамелеон одновременно о двух вещах, когда один глаз фокусируется на сочном кузнечике на соседней веточке, а другой обследует ветви над головой в поисках лучшего маршрута подхода? Может ли морской конек одним глазом разглядывать потенциального товарища, а другим следить за движениями затаившегося хищника? Мой мозг с одним глазом не может. Если я читаю газету, а по радио крутят "Эту американскую жизнь", мой мозг может переключаться между ними, но как бы я ни старался, я не могу смотреть обе истории в одно и то же время.

Мне также трудно понять, как визуально выглядят камбалы, особенно в раннем детстве. Детеныши камбалы выглядят как любая другая нормальная рыба, плавают вертикально с одним глазом на каждой стороне. Затем, готовясь к взрослой жизни, они претерпевают причудливую трансформацию: один глаз перемещается на другую сторону лица. Это похоже на реконструктивную операцию на лице, только в замедленном режиме, без скальпелей и швов. И даже не всегда медленно. Вся миграция занимает всего пять дней, если вы звездчатая камбала, а у некоторых видов - менее одного дня. Если у рыбы и бывает неловкий подростковый период, то у этой он точно есть.

В обмен на унизительное положение, когда оба глаза расположены рядом друг с другом на одном боку, камбалы обладают потрясающим бинокулярным зрением. Как и у гордых соседей, оба глаза выступают из тела, и каждый может поворачиваться независимо. (Может быть, камбалы - единственные рыбы, способные испугать себя, посмотрев себе в глаза?) Бинокулярное зрение - полезная адаптация для такого образа жизни, когда рыба лежит в засаде на песчаном или каменистом дне, изысканно маскируясь под субстрат, и выжидает удобного момента, чтобы молниеносным выпадом схватить ничего не подозревающую креветку или другого несчастного прохожего. Благодаря утонченному восприятию глубины камбала может лучше оценить время и мудрость своей засады.

Очевидно, что миграция глаз является эффективной стратегией выживания для камбаловых и родственных им плоских рыб, которых насчитывается более 650 видов, включая подошву, тюрбо, палтусов, пескарей, камбал и гольцов. Некоторые виды называются "правоглазыми камбалами" - они всегда лежат на левом боку после того, как их левый глаз переместился на правую сторону тела. Другие - левоглазые камбалы. Несмотря на прекрасную адаптацию, многие виды атлантической камбалы и подошвы находятся под угрозой вылова.

Перейти на страницу:

Похожие книги

Инсектопедия
Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры. «Инсектопедия» – это книга, показывающая нам, как насекомые инициируют наши желания, возбуждают страсти и обманывают наше воображение, исследование о границах человеческого мира и о взаимодействии культуры и природы.

Хью Раффлз

Зоология / Биология / Образование и наука
Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука