Читаем Высший замысел полностью

Можно, конечно, причислить к «живым» организмам умные компьютеры, сделанные из других элементов, таких как кремний, но сомнительно, чтобы жизнь могла самопроизвольно развиться, если бы отсутствовал углерод. Причины этого технические, но имеют отношение к уникальному способу, которым углерод соединяется с другими химическими элементами. Например, диоксид углерода СO2 при комнатной температуре представляет собой углекислый газ, весьма полезный для биологических процессов. Кремний — это элемент, расположенный в Периодической таблице химических элементов непосредственно под углеродом, поэтому он имеет сходные химические свойства. Однако диоксид кремния SiO2, кварц, гораздо полезнее в коллекции минералов, чем в легких живых организмов. И все-таки, возможно, могли бы появиться какие-то формы жизни, которые питались бы кремнием и ритмично виляли бы хвостами в лужах жидкого аммиака. Но даже такой тип экзотической жизни не мог развиться из одних лишь первоначальных элементов, поскольку из них возможно формирование только двух устойчивых соединений — гидрида лития LiH (бесцветное твердое кристаллическое вещество) и газообразного водорода Н2, — которые не способны не только ничего произвести, но даже влюбиться. Так что факт остается фактом: мы представляем собой углеродную форму жизни, и это порождает вопрос: откуда взялся углерод, в атомных ядрах которого шесть протонов, а также прочие тяжелые химические элементы, составляющие наше тело?

Первый шаг к появлению этих элементов был сделан, когда более старые звезды начали накапливать гелий, получающийся при столкновении двух водородных ядер и происходящем затем их слиянии друг с другом. Это совершается в недрах звезд, и таким образом создается энергия, которая нас согревает. Два атома гелия, в свою очередь, тоже могут столкнуться и образовать атом бериллия с четырьмя протонами в ядре. Когда же появился бериллий, он вполне мог бы слиться с третьим ядром гелия, создав углерод. Но этого не происходит, так как получившийся изотоп бериллия почти сразу же снова распадается на два ядра гелия.

Картина меняется, когда у звезды начинает заканчиваться водород. Когда это происходит, ядро звезды сжимается до тех пор, пока температура в его центре не достигнет примерно ста миллионов градусов Кельвина. При этих условиях ядра атомов сталкиваются друг с другом столь часто, что некоторые ядра бериллия, еще не успев распасться, встречаются с ядрами гелия. Тогда бериллий может слиться с гелием и образовать стабильный изотоп углерода. Но этому углероду предстоит еще долгий путь, чтобы сформировать упорядоченные структуры химических соединений такого типа, которые могли бы наслаждаться бокалом бордо, жонглировать горящими факелами или задаваться вопросами о Вселенной. Для существования таких созданий, как люди, углерод должен переместиться из недр звезд в более благоприятные места. Это происходит, как мы уже сказали, когда звезда в конце своего жизненного цикла взрывается как сверхновая, выбрасывая углерод и другие тяжелые элементы, которые потом конденсируются в планеты.

Этот процесс создания углерода называется тройным альфа-процессом (или тройной гелиевой реакцией), поскольку альфа-частица — другое название ядра изотопа гелия, участвующего в этом процессе, а для того чтобы реакция произошла, требуется слияние трех из них. В соответствии с обычной физикой скорость образования углерода в тройном альфа-процессе должна быть очень низкой. Отмечая это, в 1952 году Хойл предсказал, что суммарная энергия бериллия и ядра гелия должна быть почти в точности равна энергии определенного квантового состояния образовавшегося изотопа углерода. Такое явление, называемое ядерным резонансом, многократно ускоряет процесс ядерной реакции. В то время подобный уровень энергии был неизвестен, но, основываясь на предположении Хойла, американский астрофизик Уильям Фаулер (1911–1995) из Калифорнийского технологического института стал искать и нашел его, обеспечив важную поддержку взглядам Хойла на то, как были созданы сложные ядра.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука