Мне нужно вычислить ускорение тела, следовательно, запишем второй закон Ньютона, сокращённо 2 з-н Н. Эх, хорошее было время, когда я ещё в школе так писал. Ладно. Ускорение умноженное на массу равно сумме сил. Получается, нужно найти сумму сил и поделить её на массу, чтобы найти ускорение тела. Если рассмотреть наклонную поверхность, то получается, что сила реакции опоры не учитывается, так как перпендикулярна, а от гравитации остаётся только sin(α)mg. Делим на массу, масса сокращается. Получаем sin(α)g, где α — это наш угол наклона.
Теперь нужно найти ускорение из экспериментальных данных. Если тело прошло девять метров за шесть секунд и стартовало оно с нулевой скоростью, то какое у него ускорение? Формулу я не помню, так что просто нарисую рисунок. Две оси координат, по вертикальной будет откладывать скорость, по горизонтальной время. Тогда площадь под графиком — это пройденное расстояние. Так как ускорение постоянное, то график скорости выглядит как наклонная линия, которая идёт из начала координат. Получается треугольник. По нижней стороне шесть секунд, плюс мы знаем его площадь — девять метров. А нужно найти вторую сторону при прямом угле, чтобы найти скорость, которую можно поделить на время, и тем самым найти ускорение.
Площадь прямоугольного треугольника — это произведение катетов, поделить на два. А мне нужно найти обратное. Значит, площадь умножаем на два, восемнадцать, делим на шесть, получаем скорость три метра в секунду. Делим ещё раз на время, получаем ускорение половина метра в секунду за секунду. Теперь подставляем в прошлую формулу… Хм, место на доске закончилось. Нужно было писать не так крупно. Теперь или стирать что-нибудь, или уменьшать масштаб всего написанного… Кстати, интересная мысль. Я представил, как всё написанное на доске уменьшается, и это сработало. Правда, теперь читать записи стало труднее. Нет, всё таки мне не удалось обойти ограничение по размеру.
Наверное, нужно прокачать мозг для того, чтобы увеличить размер этой доски в чертогах разума. Я стёр вывод формулы с ускорением, оставив лишь рисунок и последний этап: a=sin(α)g. С вычислениями ускорения тоже пришлось поработать. Переместил рисунок, оставил результат и формулу, что a=S*2/t/t, где S-это пройденное расстояние, а t-это время.
В результате, после всех этих манипуляций с числами, я получил, что sin(α)=0,05. Теперь можно попробовать вычислить угол, а можно сразу подставить этот синус в формулу для вычисления глубины. На оставшемся месте доски я нарисовал прямоугольный треугольник, у которого один угол был очень маленьким, из-за чего треугольник сделался очень длинным. Вертикальная сторона — это глубина, а самая длинная сторона — это сколько я прошёл. Их связывает синус угла наклона. Ведь синус — это отношение катета к гипотенузе. Тогда я просто подставляю найденный синус и десять тысяч метров умножаю на 0,05. Получается, я сейчас на глубине в пять сотен метров, а это половина километра.
Закончив с вычислениями, я окинул взглядом доску. М-да, метр на метр — это очень мало. Ещё раз, полюбовавшись ответом, я вышел из чертогов разума. Светоч потух, так что пришлось создать нового. После чего я вновь увидел всё тот же длинный, наклонный тоннель, который уходил в темноту. Интересно сколько времени прошло, раз даже светоч погас из-за того, что у него закончилась энергия? По идеи не больше получаса, ведь я использовал всего три формулы, да и расчетов было мало. Но, тем не менее, энергия в светоче за это время закончилась.
Вдруг, я услышал какой-то нарастающий шум. Что-то стремительно приближалось ко мне по тоннелю. Создал ещё один светоч, но в несколько раз ярче, чтобы можно было увидеть опасность издалека. Если это какой-то монстр, то это одна проблема. Но вот если это какой-то искусственный механизм, к примеру, огромный проходческий комбайн, то мне придётся не сладко. Обычно такие устройства имеют спереди проходческий щит с кучей твёрдосплавных зубов, которые и грызут породу. Следовательно, нужно убраться с его пути и поскорее. Проблема в том, как это сделать в тоннеле на глубине в пятьсот метров?
Грохот усиливался, но я всё ещё не мог придумать, что делать в подобной ситуации. Глупо думать, что я смогу остановить эту штуковину. Бежать от неё по тоннелю выглядит перспективно, но только при допущении, что у неё скорость ниже моей. Тогда остаётся только одно, каким-то образом сломать стену и спрятаться в нише. Первым делом я попробовал долбануть рукой по камням. Удар вышел увесистым, однако кроме пары трещин ничего разрушить не получилось. А эта каменная порода твёрдая. Блин, тогда нужно срочно придумать какой-то другой способ.