В 1968 году американские ученые К. Д. Терри и В. X. Такер обратили внимание на довольно большую сверхновую, которая излучала космические лучи в триллион раз интенсивнее, чем Солнце, и это излучение в космос продолжалось по крайней мере неделю. Если бы такая сверхновая была от нас на расстоянии хотя бы в 16 световых лет, энергия космических лучей, достигающих нас даже с такого огромного расстояния, была бы равна суммарной солнечной радиации за этот же период, и этого должно было бы хватить, чтобы каждый из нас (возможно, также и большинство других форм жизни) получил смертельную дозу радиации. Дополнительное тепло, доставляемое такой сверхновой, и тепловая волна, которая получилась бы в результате, в таком случае не имели бы уже никакого значения.
Конечно, нет настолько близких к нам звезд, способных взорваться в гигантскую сверхновую, такой ситуации не было в прошлом и, насколько нам известно, не ожидается и в обозримом будущем. Однако сверхновая, находящаяся гораздо дальше, могла бы тоже причинить значительный вред.
В настоящее время интенсивность космических лучей, достигающих атмосферы Земли, составляет около 0,03 рентгена в год, и потребовалось бы в 500 раз больше, или 15 рентген в год, чтобы причинить вред. И все же по частоте сверхновых, по их случайным позициям и размерам Терри и Такер рассчитали, что вследствие взрывов сверхновых Земля могла бы получать концентрированную дозу излучения в 200 рентген, примерно каждые 10 миллионов лет, и значительные дозы, соответственно, в более длительные интервалы. За 600 миллионов лет, со времени, до которого добирается изучение окаменелостей, существует реальный шанс, что по крайней мере одна вспышка в 25 000 рентген достигла нас. Безусловно, это могло бы привести к бедствию, но существуют естественные механизмы, снижающие эффективность бомбардировки космическими лучами.
Например, я только что говорил об интенсивности космических лучей, достигающих атмосферы Земли. Это было сказано намеренно, потому что атмосфера не вполне прозрачна для космических лучей. Когда космические частицы несутся мимо атомов и молекул, составляющих атмосферу, рано или поздно происходят столкновения. Атомы и молекулы разбиваются вдребезги, и частицы вылетают из них уже как «вторичная радиация».
Вторичная радиация менее энергетична, чем «основная радиация», состоящая из частиц космических лучей в открытом космосе, но она все еще достаточно энергетична, чтобы принести немало вреда. Однако и вторичная радиация претерпевает дальнейшие столкновения с атомами и молекулами в атмосфере Земли, и к тому времени, когда летящие частицы достигают поверхности Земли, атмосфера поглощает существенную часть энергии.
Короче говоря, атмосфера действует, как защитное одеяло, не до конца эффективное, но не такое уж и неэффективное. Астронавты на околоземной орбите или на Луне подвергаются более интенсивной бомбардировке космическими лучами, чем мы на поверхности Земли, и это приходится учитывать.
Астронавты во время сравнительно коротких выходов в космос могут получить дополнительную дозу радиации, но обитателям космических поселений такая опасность не грозит. Ведь поселения можно спроектировать со стенами, достаточно толстыми, чтобы обеспечить по крайней мере такую же защиту от космических лучей, какую дает атмосфера Земли.
Правда, если наступит время, когда основная часть человечества разместится в космических поселениях и сочтет себя свободной от перипетий Солнца — она будет безразлично относиться к тому, что Солнце превратится сначала в красного гиганта, а потом станет белым карликом, — прилив и отлив потока космических лучей может оказаться его главной заботой и главной угрозой катастрофы.
Возвращаясь снова к Земле, замечу: пока атмосфера сохраняет свою настоящую структуру и состав, нет причин полагать, что ее защитное действие ослабнет и сделает нас более уязвимыми при увеличении интенсивности космических лучей. Существует, однако, и другой вид защиты, который нам предоставляет Земля. Он более эффективен, но зато менее долговечен, и чтобы это объяснить, понадобится небольшое отступление.
Уже за 600 лет до н. э. греческий философ Фалес (624–546 до н. э.) впервые проводил опыты с естественными магнитными минералами и открыл, что они могут притягивать железо. Со временем узнали, что минерал магнитный железняк (который известен нам, как окись железа) можно использовать для притягивания тонких кусочков стали, которые потом проявляют это свойство более интенсивно, чем сам магнитный железняк.
В средние века открыли, что если намагниченную иголку поместить на легкий плавающий предмет, то эта иголка непременно остановится в направлении север-юг. Один конец иголки был поэтому назван северным магнитным полюсом, а другой — южным. Первыми, заметившими этот факт незадолго до 1100 года, были китайцы, приблизительно век спустя он стал известен и европейцам.