Как яйцеклетки, так и клетки спермы имеют только половину обычного количества хромосом. Все яйцеклетки и все клетки спермы получают только по одной хромосоме от каждой из двадцати трех пар. Когда они сочетаются, оплодотворенная яйцеклетка имеет опять двадцать три пары хромосом, но одну в каждой паре от матери, одну — от отца. Таким образом потомство наследует свойства равным образом от обоих своих родителей, и хромосомы ведут себя так, словно несут в себе программу для приготовления фермента.
Но какова химическая природа этой предполагаемой программы?
Со времени открытия хромосом в 1879 году немецким анатомом Вальтером Флеммингом (1843–1905) имело место общее допущение, что программа, если она существует, это — протеин. Протеины, как известно, наиболее сложные вещества, существующие в тканях, а ферменты, как стало известно в 1926 году из работ американского биохимика Джеймса Батчелора Самнера (1887–1925), собственно и есть протеины. Безусловно, именно протеин должен служить программой для конструирования других протеинов.
Однако в 1944 году канадский физик Освальд Теодор Авери (1877–1955) доказал, что молекулой программы является совсем не протеин, а молекула другого типа, называемая «дезоксирибонуклеиновая кислота», или сокращенно ДНК.
Это было большим сюрпризом, потому что полагали, что ДНК является простой молекулой, такой, которая совсем не подходит для того, чтобы служить программой для сложных ферментов. Более пристальное изучение ДНК, однако, показало, что это на самом деле сложная молекула, более сложная, чем протеины.
Как и молекула протеина, молекула ДНК состоит из длинных цепей простых строительных блоков. Строительный блок здесь называется «нуклеотидом», и одна молекула ДНК может быть построена цепями из многих тысяч нуклеотидов. Нуклеотиды представлены четырьмя разновидностями (не двадцатью, как протеины), и эти четыре разновидности могут быть сцеплены вместе в каком угодно порядке.
Возьмем три нуклеотида. Тогда будет 64 различных «тринуклеотида». Если пронумеровать нуклеотиды: 1, 2, 3 и 4, — получим тринуклеотиды: 1-1-1, 1-2-3, 3-4-2, 4-1-4 и так далее, всего 64 различных комбинаций. Один или более из этих тринуклеотидов могут соответствовать определенной аминокислоте; некоторые могут обозначить «пунктуацию» — начало цепи аминокислот или ее окончание. Перевод тринуклеотидов молекулы ДНК в аминокислоты ферментной цепи называется «генетическим кодом».
Но это, просто заменяет одну проблему другой. Что позволяет клетке из неисчислимого количества молекул ДНК, которые могут существовать в принципе, строить определенную молекулу ДНК, которая приведет к построению молекулы определенного фермента?
В 1953 году американскому биохимику Джеймсу Дьюи Уотсону (р. 1928) и английскому биохимику Фрэнсису Г. К. Крику (р. 1916) удалось установить структуру молекулы ДНК. Она состояла из двух прядей, свитых в двойную спираль. (То есть каждая прядь имела форму винтовой лестницы, и обе пряди переплетались.) Каждая прядь в определенном смысле была противоположностью другой, так что они совершенно подходили друг к другу. В процессе деления клетки каждая молекула ДНК разматывалась на две отдельные пряди. Каждая прядь затем сама собой осуществляла построение второй пряди, которая совершенно ей подходила. Каждая прядь служила программой для своего нового партнера, и результат был таков, что там, где вначале существовала одна двойная спираль, образовывались две двойные спирали, каждая — точная копия другой. Процесс был назван «репликацией». Таким образом, раз существовала определенная молекула ДНК, она размножалась сама, точно сохраняя свою форму от клетки к дочерней клетке и от родителя к потомству.
Отсюда следует, что каждая клетка и, конечно, каждый организм, в том числе человеческий, имеет свою форму, свое строение, свою химию (до определенной степени даже свое поведение), в точности определяемые его ДНК. Оплодотворенная яйцеклетка одного вида организма не очень отличается от яйцеклетки организма другого вида, но молекулы ДНК в каждой существенно отличаются одна от другой. По этой причине человеческая оплодотворенная яйцеклетка будет развиваться в человеческое существо, а оплодотворенная яйцеклетка жирафа будет развиваться в жирафа, и никакая путаница тут невозможна.
Но так уж происходит, что передача молекул ДНК от клетки к дочерней клетке и от родителя к потомку не столь же совершенна, как все остальное. Опыт пастухов и фермеров говорит, что то и дело появляются животные или растения, которые далеко не во всем похожи на родительские организмы, В целом эти отличия невелики и иногда даже не особенно заметны. Иногда же отклонение настолько велико, что создает так называемую «разновидность» или «монстра». Научный термин для всех таких потомков с измененными характеристиками, экстремальными или незаметными — мутант, от латинского слова «мутация» — изменение.