Применение потоков хорошо там, где можно выполнять операции параллельно — например, в ряде математических задач (графика, цифровая обработка сигналов, и т.д.). Потоки также прекрасны там, где программа должна выполнять несколько независимых функций, при этом использующих общие данные — например, веб-сервер, который обслуживает несколько клиентов одновременно. Эти два класса задач мы здесь и рассмотрим.
Предположим, что мы имеем графическую программу, выполняющую алгоритм трассировки луча. Каждая строка растра на экране зависит от содержимого основной базы данных (которая описывает генерируемую картинку). Ключевым моментом здесь является то, что
Ниже приведен однопоточный вариант:
int main (int argc, char **argv) {
int x1;
... // Выполнить инициализации
for (x1 = 0; x1 < num_x_lines; x1++) {
do_one_line(x1);
}
... // Вывести результат
}
Здесь мы видим, что программа итеративно по всем значениям рассчитает необходимые растровые строки.
В многопроцессорных системах эта программа будет использовать только один из процессоров. Почему? Потому что мы не указали операционной системе выполнять что-либо параллельно. Операционная система не настолько умна, чтобы посмотреть на программу и сказать: «Эй, секундочку! У нас ее 4 процессора, и похоже, что у нас тут несколько независимых потоков управления. Запущу-ка я это на всех 4 процессорах сразу!»
Так что это дело разработчика (ваше дело!) — сообщить QNX/Neutrino, какие разделы программы следует выполнять параллельно. Проще всего это можно было бы сделать так:
int main (int argc, char **argv) {
int x1;
... // Выполнить инициализации
for (x1 = 0; x1 < num_x_lines; x1++) {
pthread_create(NULL, NULL, do_one_line, (void*)x1);
}
... // Вывести результат
}
С таким упрощением связано множество проблем. Первая из них (и самая незначительная) состоит в том, что функцию void*
вместо int
. Это можно легко исправить с помощью оператора приведения типа (typecast).
Вторая проблема несколько сложнее. Скажем, что разрешающая способность дисплея, для которой вы рассчитывали картинку, была равна 1280×1024. Нам пришлось бы создать 1280 потоков! В общем-то, для QNX/Neutrino это не проблема — QNX/Neutrino позволяет создавать до 32767 потоков в одном процессе! Однако, каждый поток должен иметь свой уникальный стек. Если ваш стек имеет разумный размер (скажем 8 Кб), эта программа израсходует под стек 1280×8 Кб (10 мегабайт!) ОЗУ. И ради чего? В вашей системе есть только 4 процессора. Это означает, что только 4 из этих 1280 потоков будут работать одновременно, а другие 1276 потоков будут ожидать доступа к процессору. (В действительности, в данном случае пространство под стек будет выделяться только по мере необходимости. Но тем не менее, это все равно расходование ресурсов впустую — есть ведь еще и другие издержки.)
Более красивым способом решения этой задачи было бы разбить ее на 4 части (по одной подзадаче на каждый процессор), и обрабатывать каждую часть как отдельный поток:
int num_lines_per_cpu;
int num_cpus;
int main (int argc, char **argv) {
int cpu;
... // Выполнить инициализации
// Получить число процессоров
num_cpus = _syspage_ptr->num_cpu;