Суждения, очевидным образом не выражающие субъектно-предикатную форму, в таком случае должны быть изменены так, чтобы эта форма в них проявилась. Суждение «Германия проиграла войну» должно быть выражено как «Германия есть проигравшая в последней войне», где субъектом является «Германия», предикатом – «проигравшая в последней войне», а связкой, разумеется, «есть». При анализе суждения «десять есть больше пяти» «десять» будет субъектом, «число большее, чем пять» – предикатом, а «есть» – связкой [14] .
Вполне несложно выразить вербально в субъектно-предикатной форме любое суждение. Однако такое вербальное отождествление зачастую скрывает фундаментальные логические различия. Основой критики традиционной логики со стороны современной явилось указание на то, что традиционный подход приписывает единую (категорическую) форму суждениям, существенно различающимся по форме.
Читателю может быть невдомек, в чем значимость подобного спора о подходах к анализу суждений. Ответ прост. Анализ суждений осуществляется с целью выявления того, какие выводы можно обоснованно сделать, исходя из тех или иных суждений. Следовательно, если имеет место множественность форм суждений, а любая форма или структура детерминирует обоснованность умозаключения, то соответствующее усовершенствование анализа суждений может позволить нам достигнуть более точного понимания области возможных умозаключений.
Еще одна причина важности анализа структуры суждений заключается в стремлении выработать некие стандартные или канонические способы демонстрации того, что мы хотим утверждать. Мы хотим отыскать некие канонические формулировки суждений определенного типа, с тем чтобы ускорить процесс вывода. Так, в элементарной алгебре крайне удобно записать квадратное уравнение 5х2 = Зх – 5 в стандартной форме: 5х2 – Зх + 5 = 0. Это удобно потому, что мы знаем корни общего квадратного уравнения в стандартной форме ах2 + Ьх + с = 0, и нам несложно отыскать численный ответ нашей задачи. Более того, если мы примем стандартную форму записи уравнений, нам будет гораздо легче сравнивать различные уравнения и усматривать их сходства. То же самое имеет место и в логике. Если мы один раз определим критерии обоснованности умозаключений, отталкивающихся от суждений, выраженных в стандартной форме, то проведение всех последующих умозаключений становится почти механическим.
При этом сведение к стандартной форме суждения, выраженного в определенной вербальной форме, следует осуществлять очень осторожно, чтобы ничего не упустить из его изначального значения. Так, например, довольно сложно поверить в то, что при сведении к стандартной форме строчки из стихотворения Китса сохраняются все оттенки смысла, содержавшиеся в ней изначально.
Количество
Категорические суждения классифицируются по количеству и по качеству. В суждении «все бифштексы – сочные» нечто утверждается о каждом бифштексе, тогда как в суждении «некоторые бифштексы – жесткие» информация относится лишь к неопределенной части класса бифштексов. Суждения, в которых нечто предицируется всему классу, называются общими, а те, в которых нечто предицируется неопределенной части класса, называются частными. Частицы «все» и «некоторые» именуются знаками количества, поскольку они указывают на величину той части субъекта, относительно которой утверждается предикат. Различие между этими частицами проявляется более явно, если частицу «все» называть знаком определенного класса, а частицу «некоторые» – знаком неопределенной части класса. В обыденной речи знаки количества неясны. Так, суждение «некоторые профессора являются сатирическими», как правило, будет пониматься в том смысле, что некая часть, но не весь класс профессоров является сатирической. В данном случае «некоторые» означает «некоторые, но не все». С другой стороны, суждение «у некоторых читателей данной книги не возникнет трудностей в ее понимании» будет скорее понято, как утверждающее то, что некая часть читателей, не исключая и всего класса, не будет иметь трудностей в понимании книги. В данном случае «некоторые» означает «некоторые и, возможно, все». Мы избежим данной двусмысленности, договорившись, что в логике частица «некоторые» будет пониматься во втором смысле, т. е. как не исключающая всего класса.
Иная двусмысленность проявляется при употреблении слова «все». Иногда оно обозначает всех членов конечного и пронумерованного набора как в суждении «все книги на этой полке – философские». В других же ситуациях, как, например, в суждении «все люди смертны» «все» означает «все возможные» и не может без потери для изначального значения рассматриваться как относящееся лишь к ограниченному числу людей, которые, скажем, существуют сейчас или существовали когда-либо. Данное различие имеет первостепенное значение, и мы столкнемся с ним при обсуждении индукции и дедукции. Много заблуждений происходит по причине неучтения данного различия.