Читаем Введение в логику и научный метод полностью

С какой стороны подступиться к этому доказательству? Если читатель является современным и эмпирически ориентированным человеком, то ему может показаться, что для достижения поставленной задачи необходимо только провести несколько точных измерений веса тел в воде и без воды, подвесив их к пружинным весам. Однако Архимед был слишком мудрым ученым и хорошо знал требования доказательства, чтобы сделать нечто подобное. Во-первых, подтверждение суждения посредством измерения всегда будет лишь приблизительным. Ни одно из двух измерений не укажет в точности на одну и ту же потерю в весе и не укажет, что потеря веса в точности равна весу вытесненной воды. Во-вторых, никакое число измерений не сможет показать, что данное суждение будет истинным для всех возможных случаев, т. е. для тех случаев, которые имели место в прошлом и всех тех случаев, когда тело будет падать в воду в будущем. Как можно, имея свидетельства частных измерений, быть уверенным в том, что если твердое тело больше определенного размера или если количество воды увеличено в достаточной мере, то отношение, утверждаемое в указанном суждении, все равно будет иметь место? Читатель согласится, что метод экспериментального подтверждения не может гарантировать невозможности исключений.

Так как же в таком случае Архимеду удалось доказать данное суждение? К счастью, доказательство, которое он посчитал адекватным, присутствует в сохранившихся отрывках его трактата «О плавающих телах». На протяжении веков данное доказательство служило моделью того, каким должно быть доказательство. Также оно смогло вдохновить таких людей, как Кеплер и Галилей. Доказательство состоит из проявления необходимых отношений между природой, или определением, жидкостей и природой поведения твердых тел, погруженных в жидкости. Рассмотрим его более детально, чтобы открыть для себя важнейшие свойства дедуктивного рассуждения.

Архимед начинает свой трактат с постулата, или допущения, с помощью которого определяется природа жидкостей. Затем он доказывает шесть суждений посредством данного постулата и геометрических теорем, которые были ранее доказаны в соответствующих трактатах по данному предмету. Однако для того чтобы доказать седьмое суждение, нужен только исходный постулат и два предшествующих суждения. Мы просто их приведем, а затем повторим доказательство седьмой теоремы. (Здесь мы не будем использовать кавычки и в некоторых местах внесем нужные сокращения.)

Сам постулат выглядит так: допустим, что жидкость имеет такую природу, что во всех одинаковых и непрерывных положениях ее частей то количество (portion), которое претерпевает наименьшее давление, вытесняется тем количеством, которое претерпевает наибольшее давление. И каждая часть жидкости испытывает давление того количества жидкости, которое находится перпендикулярно над ней, если последнее погружается вниз или испытывает давление от другого количества.

Суждение 3. Твердые тела, которые обладают такой же плотностью, что и жидкость, будучи погруженными в нее, не будут плавать на поверхности, но и не потонут.

Суждение 6. Если твердое тело, более легкое, чем жидкость, погрузить в воду, то оно будет вытолкнуто вверх силой, равной разнице между весом тела и весом вытесненной жидкости.

Суждение 7 и его доказательство таковы: твердое тело, более плотное, чем жидкость, при погружении в эту жидкость опустится на дно жидкости; будучи взвешенным в жидкости, твердое тело будет легче своего истинного веса ровно на столько, сколько весила вытесненная им жидкость.

Доказательство. 1. Первая часть суждения очевидна, поскольку часть жидкости, находящаяся непосредственно под твердым телом, будет испытывать большее давление, чем части жидкости, находящиеся под этой частью; и, следовательно, эти другие части будут поддаваться до тех пор, пока твердое тело не достигнет дна.

2. Пусть А будет твердым телом, более тяжелым, чем такой же объем жидкости, и пусть (G + Н) представляют его вес так, что G представляет вес такого же объема жидкости.

Возьмем твердое тело В, более легкое, чем такой же объем жидкости, и такое, что вес В равен G, тогда как вес такого же объема жидкости равен (G + Н). (Иными словами, В следует выбрать таким образом, чтобы его объем равнялся такому объему жидкости, который будет равен по весу телу А.)

Пусть далее А и В будут совмещены в единое твердое тело и погружены в жидкость. Тогда поскольку (А + В) будет иметь такой же вес, как и такой же объем жидкости, а оба веса будут равны (G + Н) + G, то из этого следует, что (А + В) в жидкости останется неподвижным.

Следовательно, сила, которая заставляет А тонуть, должна быть равной силе, выталкивающей В вверх. Эта последняя равна разнице между (G + Н) и G. Поэтому А вдавливается силой, равной Н, т. е. его вес в жидкости равен Н или разнице между (G + Н) и G.

Читателю следует изучить данное доказательство тщательно и неоднократно. После этого он может задуматься над следующими вопросами:

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия