Однако мы пока еще недостаточно убедились в том, что числа, приписываемые подобным образом предметам, обладают всеми своими известными значениями. Мы показали, что вес, в отличие от тяжести, является суммируемым свойством. Нам нужно также показать, что числа, приписываемые весам, совместимы с самими собой, и сделать это придется опять с помощью эксперимента. Мы должны убедиться в том, что мы не допускаем ситуации, когда различные числа приписываются одним и тем же весам. Так, предположим, вес определенного объекта А рассматривается как определенная единица измерения или 1, и что мы с помощью этого процесса можем приписывать веса другим объектам так, что А2 будет обладать весом 2, А4 – весом 4, а А6 – весом 6. Можем ли мы быть уверены в том, что А2 и А4, будучи размещенными на одной стороне весов, окажутся на том же уровне, что и А6, если его поместить на противоположную сторону? Очень важно отметить, что мы не можем быть уверены в этом до тех пор, пока мы не проведем соответствующего эксперимента. Суждение о том, что 2 + 4 = 6, может быть доказано чисто арифметически без какого-либо эксперимента. Однако до тех пор, пока мы не проведем соответствующих экспериментов, мы не можем быть уверены в том, что физическая операция сложения весов согласуется с известными свойствами чисто арифметического сложения. Физическая операция сложения весов обладает обычными формальными свойствами арифметического сложения только в некоторых случаях, а не во всех: рычажные весы должны быть правильно сконструированы, стороны рычага должны быть одинаковой длины и т. д.
Метод измерения весов может использоваться также и для измерения других свойств. Длины, временные интервалы, площади, углы, электрический ток, электрическое сопротивление – все это может быть измерено сходным образом. Эти свойства являются суммируемыми: совмещая два объекта, обладающих одним и тем же свойством, мы получаем объект с увеличенной степенью этого свойства. Суммируемые свойства часто называются экстенсивными. Их можно измерять в соответствии с процессами, рассмотренными в данном параграфе. Такое измерение мы будем называть фундаментальным.
§ 5. Формальные условия измерения
На данном этапе мы можем абстрактно сформулировать условия для измерения. Минимальные требования для использования чисел для измерения (в самом широком смысле этого слова) качественных различий представлены в первых двух условиях:
1. Если дан набор из n предметов, В1, В2… Вп, то мы должны расставить их в последовательность относительно данного качества так, чтобы между любыми двумя предметами имело место одно, и только одно, из следующих отношений: (a) Bi > Bj, (b) Bi < Bj (с) Bi = Bj. Знак «>» и обратный ему знак «<» обозначают отношение, на основе которого предметы могут выделяться как отличающиеся по степени изучаемого качества. Отношение > должно быть асимметричным.
2. Если Bi > Bj и Bj > Вк, то Bi > Вк. Это условие выражает транзитивность рассматриваемого отношения.
Данные два условия достаточны для измерения интенсивных качеств, таких, как температура или плотность. Они являются необходимыми, однако недостаточными для экстенсивного измерения. Для экстенсивного измерения нам нужен некоторый физический процесс сложения, обозначаемый знаком «+». Необходимо также экспериментально показать, что этот процесс обладает следующими формальными свойствами:
3. Если Ве + Bf= Вg, то Bf+Be = Вg.
4. Если Bi = Вi, то Bi + Bj >
5. Если Bi = Вi и Bj =
6. (Bi + Bj) + Bk = Bi + (Bj + Bk).