Читаем Введение в историю экономической мысли. От пророков до профессоров полностью

Рассуждения о ренте должны быть понятны нам, усвоившим модель ренты по Рикардо[59] (см. главу 16). Только вместо различия по плодородности земель у Тюнена фигурируют различия по расстоянию перевозки. Возможно, что Тюнен не знал о теории Рикардо, однако вопрос этот большого значения не имеет. Заметим, что мы пока еще находимся на этапе исходных условий задачи. Тюнен не заканчивает рентой, у него с этого лишь начинается самое интересное.

Любой рабочий может бросить батрачить на хозяина и сам стать хозяином, сказали мы. Значит, заработная плата таких батраков должна быть не меньше того дохода, какой может быть получен новоявленным капиталистом, взявшим себе новый участок. Это значит, что доход рабочего будет превышать его прожиточный минимум (ведь доход капиталиста-фермера, как объяснил Адам Смит, состоит из его собственной заработной платы как рабочего и его же прибыли как капиталиста). Поэтому заработную плату рабочего Тюнен выражает[60] алгебраической суммой (a + у), где a — это прожиточный минимум (известная величина), у — излишек зерна (величина неизвестная), который может пойти на накопление капитала. Понятно, что заработная плата едва ли будет больше, чем доход новоявленного капиталиста, — нынешнему хозяину нет смысла платить своим рабочим больше, чем они могут заработать сами.

Стало быть, исходным становится положение о том, что заработная плата наемного рабочего равна доходу, который он может получить, если сам станет капиталистом. Затем вводятся новые величины:

q — размер капитала, который требуется новому капиталисту для обработки земли и получения урожая (измеряется в единицах заработной платы (а + у), которая сама измеряется зерном)[61];

z — средняя (обычная) норма прибыли в стране;

р — средний годовой продукт деятельности бывшего рабочего, ставшего капиталистом, использующим q единиц капитала. Из трех этих величин последняя считается известной, а две первых — неизвестными. Теперь можно записать формулу, выражающую годовой продукт I новоявленного капиталиста-фермера:

р = (а + у) + zq (а + у). (1)

Это то, о чем говорил Адам Смит, т. е. сумма заработной платы и прибыли на капитал (измерено, напоминаем себе, в зерне). Отсюда можно получить выражение для нормы прибыли:

z = p-(a + y)/ q (a + y) (2)

Если, как мы говорили, годовой излишек зерна, у, идет на накопление капитала, тогда годовая прибыль на капитал будет равна у. То есть:

zy = p — a - y / q(a + y) (3)

Правую часть равенства можно рассматривать как функцию от аргумента у. Это выражение представляет годовой доход на капитал, и естественно предположить, что получатель дохода стремится сделать его максимальным. Как известно, чтобы найти точку максимума функции, нужно взять от нее первую производную и приравнять к нулю. Так и напишем:

d/dy[(p — a — y) / (q(a + y)] (4)

Теперь что делает Тюнен? Он решает уравнение (4) для величины (а + у), ведь это и есть искомый уровень "естественной заработной платы". Всякий, кто любит математику, может попытаться решить это уравнение. При правильном решении должен получиться результат Тюнена. Вот он:

a + у= Vар.

В правой части остались только известные величины. Тюнен был об этой формуле такого высокого мнения, что распорядился выбить ее на своем надгробии.

..А в чем дело? Что все это значит? И что это дает? Ну корень из ар… ну и что? Возникают такие вопросы, не правда ли? К чему это все? Что делать с этим квадратным корнем, к чему его приложить?

Вы, конечно, сами проделали все выкладки. Что если у кого-то ответ не сходится? Вот как это сделано Тюненом (проверьте себя):

Теперь берется первая производная по у (все остальные величины считаются константами):

(а + у)(р — а - 2у) — (ру — ау — y 2)(a + у) 2 =0.

Отсюда:

(а + у)(р — а - 2у) — (ру — ay — у 2);

ар — а 2 — 2ау — 2у 2 = у 2;

а 2 + у 2 +2ау = ар;

(а + y) 2 = ар;

а + у = vар.

Немудрено, что формула была осмеяна многими современниками: "Ха-ха-ха! Открытие, называется! Господа, теперь мы при начислении зарплаты будем корни извлекать!" И т. п. Мало кто понял тогда, что соль тут не столько в формуле как таковой, сколько в ее интерпретации. В данном случае мы действительно можем сказать, что дело не в идее, а в том, что с ней делают.

Производственная функция

Однако не будем забегать вперед. Тюнен еще не закончил рассуждать. Получив свой {ар описанным выше способом, он выворачивает задачу наизнанку. Сейчас он ищет другое: при каком q (капитал на одного фермера) годовая прибыль на капитал, т. е. zq, будет максимальной. Для этого он от выражения (3) берет производную по q.

Уравнение типа (4) получается иным, но он снова решает его для величины (а + у). И получает — что? Угадали: Vар.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Управление проектами. Фундаментальный курс
Управление проектами. Фундаментальный курс

В книге подробно и систематически излагаются фундаментальные положения, основные методы и инструменты управления проектами. Рассматриваются вопросы управления программами и портфелями проектов, создания систем управления проектами в компании. Подробно представлены функциональные области управления проектами – управление содержанием, сроками, качеством, стоимостью, рисками, коммуникациями, человеческими ресурсами, конфликтами, знаниями проекта. Материалы книги опираются на требования международных стандартов в сфере управления проектами.Для студентов бакалавриата и магистратуры, слушателей программ системы дополнительного образования, изучающих управление проектами, аспирантов, исследователей, а также специалистов-практиков, вовлеченных в процессы управления проектами, программами и портфелями проектов в организациях.

Коллектив авторов

Экономика