Ответ: Каждое действие ОСРВ определено как задача.
Вопрос: Что называется контекстом?
Ответ: Текущее значение ключевых регистров, связанных с задачей.
Вопрос: Что называется межзадачной связью?
Ответ: Связь между различными задачами.
Вопрос: Каково различие между жесткой, твердой и мягкой ОСРВ?
Ответ: В жесткой системе, выход времени выполнения задачи за установленный предел ведет к сбою системы; в твердой системе может допускаться незначительный выход за установленные временные рамки; в мягкой системе, выход за установленные временные рамки снижает эффективность системы, но приводит к сбоям.
Вопрос: Что такое ядро?
Ответ: Ядро — очень небольшая часть операционной системы, которая обеспечивает ключевые функции планирования задачи, диспетчеризации, и межзадачной связи.
Прежде чем перейти к дальнейшему изучению ОСРВ, мы должны сделать дать некоторых понятия, касающиеся ОСРВ.
8.3. Обзор концепций
В этом разделе мы проведем обзор некоторых важных тем, касающихся ОСРВ. Некоторые авторы определенно (и безапелляционно) заявляют, что программы ОСРВ должны быть написаны на ассемблере, чтобы обеспечить максимальное быстродействие системы. Не оспаривая такой точки зрения, мы тем не менее, представляем наши примеры на языке С, чтобы яснее осветить понятия и важные детали ОСРВ. Рассмотрим связь некоторых понятий языка С с основными принципами структур данных. ОСРВ состоит из этих совместно работающих основных структур данных, позволяющих выполнить требования к системе.
Мы советуем вам возвратиться к предыдущим разделам и вспомнить о следующих понятиях: об указателях (глава 3), глобальных и локальных переменных (глава 3) и свойствах стеков и в прерываний 68HC12 (глава 4). Повторив эти разделы, вы можете вернуться к рассмотрению динамического распределения памяти.
8.3.1. Требования к динамическому распределению RAM
В главе 4 мы обсуждали систему памяти, встроенную в отладочную плату (EVB) контроллера B32, который предназначен прежде всего для однокристальных применений. Он включает в себя 32 Кб ПЗУ типа FLASH, 1 Кб статической оперативной памяти RAM и 768 байт стираемого по байту ПЗУ типа EEPROM для сохранения данных системы. Карта памяти для B32 EVB показана на рис. 8.1. Обратите внимание, что большая часть объема принадлежит флеш-памяти EEPROM, в то время как оперативная память (RAM) занимает только 1 Кб. Фактически же только 512 байтов, доступны для использования (от $0800 до $9FFF).
$0000 $01FF | Регистры ЦП |
$0800 $0BFF | 1 Кб RAM «на чипе»; • Код/данные пользователя; • Резервирована для D-Bug12 ($0A00-$0BFF) |
$0D00 $0FFF | 768 байт EEPROM «на чипе»; • Код/данные пользователя |
$8000 $FFFF | FLASH EEPROM 32 Кб «на чипе»; • код D-Bug12 ($8000-$F67F); • Область, доступная пользователю ($F6C0–$F6FF); • Настройка функций D-Bug12 ($F680–$F6BF); • Код запуска D-Bug12 ($F700–$F77F); • Таблица вектора прерывания ($F780–$F7FF); • Расширение загрузчика ($F800-$FBFF); • EEPROM загрузчика ($FC00–$FFBF); • Векторы сброса и прерывания ($FFC0–$FFFF) |
Рис. 8.1. Карта памяти микроконтроллера B32
Для чего же эта RAM используется? Прежде всего она используется для локальных переменных каждой функции. Переменные, помещенные в стек, доступны только при вызове функции. При выходе из функции переменные удаляются из стека, освобождая пространство памяти. Ясно, что можно достаточно быстро исчерпать объем стека, если ваш встроенный контроллер использует рекурсивную подпрограмму (вызываемую, например, для получения ряда Фибоначчи или операции вычисления факториала) или функцию с высокой степенью вложения. То есть при обращении к функции, которая снова вызывает функцию, и т.д. В этих ситуациях активны как все функции, так и связанные с ними локальные переменные.