Читаем Вселенная, жизнь, разум полностью

Из кибернетики (и не только кибернетики) хорошо известно, что всякая передача информации происходит на фоне помех, частично ее искажающих. Не составляет исключения и передача наследственной информации. В этом случае искажения в передаче информации носят название «мутаций». Под влиянием таких «искажений при передаче» действие управляющей системы может измениться. Это повлечет за собой изменение сохраняющих реакций, что в свою очередь приведет к изменению характера взаимодействия организма с окружающей средой. Такие изменения могут радикально изменить как в ту, так и в другую сторону вероятность сохранения данного индивидуума в борьбе за существование. Последнее обстоятельство является движущей силой естественного отбора. Таким образом, с точки зрения кибернетики можно самым общим образом и с единой точки зрения понять основные биологические категории наследственности, наследственной изменчивости и естественного отбора. В перспективе вырисовываются контуры стройной математической теории дарвиновской эволюции. Идеи Ляпунова, по нашему мнению, следует рассматривать как первый, многообещающий набросок этой теории.

Имеются все основания полагать, что в будущем синтез развитых кибернетических и био-физико-химических представлений приведет к полному пониманию сущности жизни. Пока же мы от этого еще далеки, как это хорошо понимал и сам Ляпунов. Тем не менее для анализа проблемы происхождения жизни на Земле и вероятного многообразия проявлений жизни (в том числе и разумной) во Вселенной уже сейчас идеи Ляпунова, а также примыкающие к ним идеи Колмогорова (к обсуждению которых мы вернемся в конце этой книги) имеют большое значение.

<p>13. О возникновении и развитии жизни на Земле</p>

На основании того, что было сказано в предыдущей главе, мы можем с достаточной для наших целей строгостью и точностью определить «живое вещество» как такой сложный молекулярный агрегат, в котором имеется «управляющая система», включающая в себя механизм передачи наследственной информации, обеспечивающей сохраняющие реакции следующим поколениям. Тем самым благодаря неизбежным «помехам» при передаче такой информации наш молекулярный комплекс («организм») способен к мутациям, а следовательно, к эволюции.

Возникновению живого вещества на Земле (и, как можно судить по аналогии, на других планетах) предшествовала довольно длительная и сложная эволюция химического состава атмосферы; в конечном итоге приведшая к образованию органических молекул. Эти молекулы впоследствии послужили как бы «кирпичами» для образования живого вещества.

Коль скоро, согласно всем существующим космогоническим гипотезам, планеты образуются из первичной газопылевой субстанции, химический состав которой аналогичен химическому составу Солнца и звезд, первоначальная их атмосфера состояла в основном из простейших соединений водорода — наиболее обильного элемента в космосе. Больше всего было молекул Н2, Н2О, СО2, NH3 и СН4. Кроме того, первичная атмосфера должна была быть богата инертными газами, прежде всего гелием и неоном. Тот простой факт, что в настоящее время обилие благородных газов на Земле по сравнению с Солнцем ничтожно мало, означает, что они в свое время диссипировали в межпланетное пространство. (В земной атмосфере имеется довольно значительное количество (около 1 %) аргона. Однако атмосферный аргон образовался позже в результате радиоактивного распада калия и никакого отношения к первоначальной атмосфере не имеет.)

Для понимания эволюции планетных атмосфер особенное значение имеет анализ содержания благородных газов и их изотопов в атмосферах планет земной группы. Это следует из химической инертности этих газов в сочетании с тем, что тяготение планеты должно их удержать в атмосфере в течение всего времени эволюции атмосферы (за исключением легкого гелия). Выполненный советскими учеными во время полета «Венеры-11» и «Венеры-12» изотопный анализ атмосферы нашей космической соседки дает для этого богатый материал. В табл.4 приведено относительное содержание разных изотопов благородных газов в атмосферах планет земной группы.

Таблица 4
Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука