Имеется, однако, принципиальная возможность совершенно по-новому подойти к проблеме межзвездных и трансгалактических перелетов с почти световыми скоростями. В последние годы эту новую идею выдвигал ряд авторов, но наиболее полное рассмотрение принадлежит Бюссару. Речь идет о возможности использования межзвездной среды, с одной стороны, как термоядерного горючего, с другой — как рабочего вещества ракеты. Так как межзвездный газ состоит преимущественно из водорода, на ракете должно быть установлено термоядерное устройство, синтезирующее из ядер водорода ядра дейтерия. Сооружению такого устройства не препятствует ни один из известных законов физики. Поэтому можно полагать, что когда-нибудь такой термоядерный реактор будет построен.
Особенность такого летательного аппарата реактивного действия состоит в том, что поверхность, через которую должен всасываться межзвездный газ, должна быть очень большой. Расчеты показывают, что «поверхностная плотность» ракеты этого типа должна быть 10-8 г/см2 при условии, что в окружающем пространстве в 1 см3 имеется один атом водорода. В общем случае поверхностная плотность ракеты обратно пропорциональна концентрации межзвездного газа
Если когда-нибудь этот способ передвижения в космосе будет освоен, наши потомки станут свидетелями удивительного «возврата» принципов космического полета от ракеты к… самолету, для полета которого, как известно, необходима материальная среда.
Имеется еще одна фундаментальная трудность, возникающая при движении летательного аппарата с почти световой скоростью. Столкновение такого аппарата с межзвездными атомами и особенно пылинками может иметь губительные последствия для экипажа звездолета. В самом деле, максимальная скорость ракеты при ее полете по описанной выше программе, как показывают вычисления, будет равна
Если, например,
Это, конечно, чудовищная величина. Уровень губительной жесткой радиации будет при такой бомбардировке недопустимо высок даже при полетах к ближайшим звездам. Вряд ли экранировка аппарата каким бы то ни было веществом будет эффективной, особенно если учесть очень малое значение отношения полезной массы к массе топлива в случае ракет «обычного» типа и пропорциональность поверхности всасывания межзвездной среды массе летательного аппарата — в случае ракеты, использующей для движения межзвездную среду. Мы не рассмотрели последствия столкновений с пылевыми частицами межзвездной среды, которые при таких скоростях могут быть просто катастрофическими.
Все же перечисленные трудности не дают оснований сделать вывод (как это сделал фон Хорнер), что осуществление межзвездных полетов с почти световой скоростью невозможно даже в ближайшие столетия. Ведь перспектива полета человека на аппарате тяжелее воздуха еще 100 лет назад казалась совершенно неясной. Опыт развития науки и техники учит нас, что, если есть некоторая общественная потребность в изобретении, осуществлению которого принципы науки не препятствуют, оно обязательно рано или поздно будет сделано. А темпы развития науки и техники растут из десятилетия в десятилетие.
Уже в наши дни появляются некоторые идеи, позволяющие в принципе преодолеть трудности, стоящие перед межзвездными полетами. Например, можно представить, что «встречные» межзвездные атомы будут ионизоваться с помощью некоторого агрегата, стоящего на борту ракеты, после чего ионизованные частицы будут отклоняться в сторону сильным магнитным полем.
Таким образом, принципиальных возражений против возможности полетов летательных аппаратов реактивного действия со скоростью, близкой к скорости света, не существует. Коль скоро это так, мы, рассматривая все варианты установления контактов между инопланетными цивилизациями, не можем исключить возможности прямых контактов путем межзвездных перелетов на специальных летательных аппаратах.
При этом возникает волнующий вопрос: не посещалась ли наша планета в прошлом (не обязательно весьма отдаленном) инопланетными астронавтами?