Нас бы очень далеко завело обсуждение физических принципов работы лазеров. Желающих ознакомиться с этим вопросом мы отсылаем к книге Б. Лендьела «Лазеры». — М.: Мир, 1964. Мы здесь интересуемся лазерами с «потребительской» точки зрения, что для наших целей совершенно достаточно.
Основой современных лазеров (так же, как и мазеров) является некоторое «рабочее вещество», которое может быть и твердым и газообразным. На заре развития лазерной техники в качестве такого вещества использовался преимущественно синтетический рубиновый кристалл. В последние годы «твердотельным» рабочим веществом лазеров является стекло, активированное неодимом. Такие лазеры работают на волне 1,06 мкм. Наряду с этим в последнее время большое распространение получили газовые лазеры, где рабочим веществом является углекислый газ CO2. Благодаря специфическим свойствам «рабочего вещества» при определенных условиях с его поверхности в направлении нормали выходит почти параллельный и в высокой степени монохроматический пучок излучения. Современные лазеры могут работать в двух разных режимах. В одном случае лазер может посылать очень короткие импульсы излучения, длительностью до 10–12 с. У современных «твердотельных» лазеров энергия, излученная в каждом из таких ультракоротких импульсов, может доходить до 10 Дж. Длительность импульсов может быть значительно больше, и тогда энергия, содержащаяся в импульсе, естественно, увеличивается. Например, в режиме «свободной генерации» длительность импульса порядка тысячной доли секунды, а энергия в каждом импульсе может доходить до нескольких тысяч джоулей.
Газовые лазеры, использующие CO2 в качестве «рабочего вещества», могут работать в режиме непрерывной генерации, излучая мощность в несколько десятков киловатт. Так как излучение лазера синфазно по всей его поверхности, то, как известно из оптики, угловая ширина посылаемого им пучка будет равна /
Пусть мы имеем высококачественную линзу, диаметр которой равен
Кроме исключительно высокой направленности, другим важным преимуществом пучка излучения, генерируемого лазером, является высокая монохроматичность. Так, например, у современных лазеров, работающих в непрерывном режиме, ширина полосы частот бывает до 10 кГц, что в десятки миллиардов раз меньше частоты излучения. Как мы увидим ниже, высокая степень монохроматичности пучка — весьма ценное качество для межзвездной связи.
В настоящее время усовершенствованию лазеров уделяется огромное внимание. Так, в США над этой проблемой работают тысячи фирм. Расходы на исследования в данной области достигают многих сотен миллионов долларов в год. Интерес к этой проблематике не случаен. Осуществление лазеров большой мощности будет означать появление нового типа оружия совершенно исключительной разрушающей способности. По существу, это будет знаменитый «тепловой луч» уэллсовских марсиан или, еще точнее, «гиперболоид инженера Гарина», созданный лет 60 назад фантазией Алексея Толстого. Лазеры большой мощности, вероятно, можно будет использовать как эффективное противоракетное оружие.
Нужно, однако, надеяться, что колоссальные потенциальные возможности лазеров будут использоваться только в мирных целях. Развитие этой новой техники может оказать решающее влияние на ряд областей деятельности человечества, в частности на космическую связь.
Первыми, кто обратил серьезное внимание на возможность применения лазеров для космической связи, были американские ученые Таунс (один из основоположников квантовой электроники, лауреат Нобелевской премии) и Шварц. Их работа появилась в одном из апрельских номеров журнала «Нейчур» за 1961 г. В качестве основной аппаратуры они рассматривают две системы лазеров, которые пока еще не разработаны, но в принципе могут быть изготовлены в ближайшие годы.