Читаем Вселенная, жизнь, разум полностью

Требование, чтобы электромагнитные волны не испытывали заметного поглощения при распространении как в межзвездной среде, так и в атмосферах планет, сразу же ограничивает возможный диапазон длин волн. Прежде всего, длина волны, на которой осуществляется межзвездная связь, не должна быть слишком большой. В противном случае излучение будет поглощаться межзвездной средой. Коккони и Моррисон считали, что предельная длина волны должна быть около 300 м, что соответствует частоте 1 МГц. Однако такое длинноволновое излучение не будет проходить через атмосферы планет. Оно поглотится в верхних слоях их атмосфер, где газ должен быть частично ионизован. Не приходится сомневаться, что все планеты должны иметь ионосферы. Через такие ионосферы беспрепятственно будет проходить только излучение, длина волны которого меньше 10–15 м. Ограничение со стороны коротких волн обусловлено поглощением, которое вызывается различными молекулами, входящими в состав планетных атмосфер. Уже начиная с длины волны 3 см электромагнитные волны могут поглощаться молекулами водяных паров. Таким образом, согласно Коккони и Моррисону межзвездная связь может в принципе осуществляться только на волнах короче 300 м и длиннее 3 см.

Учет поглощения в планетных атмосферах снижает верхнюю границу этого интервала длин волн до 10–15 м. Необходимо, однако, отметить, что если приемная и передающая аппаратура для межзвездной связи будет вынесена за пределы планетных атмосфер (например, помещена на искусственных спутниках), то диапазон частот, на которых возможно осуществление межзвездной связи, будет значительно расширен.

Следует отметить, что условия распространения электромагнитных волн в межзвездной среде и в планетных атмосферах не являются единственным обстоятельством, определяющим возможные значения длин волн, на которых может осуществляться межзвездная связь. Не меньшее значение имеет уровень помех. Ведь из-за огромных расстояний, разделяющих инопланетные цивилизации, мощности принимаемых сигналов должны быть очень малы. Но сама Вселенная по причинам естественного порядка излучает в той или иной степени на всех диапазонах волн. Если говорить о радиодиапазоне (который, собственно говоря, только и рассматривался Коккони и Моррисоном), то радиоизлучение Галактики и Метагалактики является серьезной помехой для обнаружения слабых сигналов искусственного происхождения. Космическое радиоизлучение имеет непрерывный спектр, причем интенсивность его, рассчитанная на единичный интервал частот, растет с уменьшением частоты.

К числу помех для межзвездной радиосвязи следует отнести также тепловое радиоизлучение планетных атмосфер. Оно особенно существенно на волнах сантиметрового, миллиметрового и субмиллиметрового диапазонов. Наконец, на высоких частотах основными помехами являются квантовые шумы, неизбежные даже для идеальных приемников излучения. Эти шумы есть следствие дискретной «фотонной» природы потоков излучения; их «температурным эквивалентом» является величина hv/k, где h — постоянная Планка, k — постоянная Больцмана, v — частота. На рис. 88 приведена зависимость «температуры шумов» от частоты (пунктирная кривая). Сплошная кривая — шумы, обусловленные излучением молекул атмосферы. Из этого рисунка видно, что минимальный уровень помех (с учетом излучения атмосферы) имеет место для интервала частот 103–104 МГц, что соответствует интервалу длин волн 30—3 см.

Теперь представим себе, что на какой-нибудь планете, обращающейся вокруг некоторой звезды, имеется высокоразвитая цивилизация, которая желает известить о своем существовании. Для этого она посылает в некотором направлении (например, в направлении на звезду, около которой можно ожидать наличие разумной жизни) радиосигнал. Сразу же эта цивилизация столкнется с такой трудностью: звезда, вокруг которой обращается планета — обитель разумной жизни. Является довольно мощным источником радиоизлучения, спектр которого непрерывен. Чтобы искусственный сигнал не «потонул» в радиоизлучении этой звезды, необходимо, чтобы его мощность была по крайней мере сравнима с мощностью радиоизлучения звезды в соответствующем диапазоне.

Будем считать, что звезда излучает в радиодиапазоне, подобно нашему Солнцу, когда на нем нет пятен (так называемое «радиоизлучение спокойного Солнца»). Для определенности будем рассматривать волну 10 см. Известно, что на этой волне спокойное Солнце излучает как нагретое тело с температурой поверхности около 50 тыс. К. Мощность радиоизлучения Солнца W, рассчитанную на единичный интервал частот, можно определить, если воспользоваться формулой Рэлея — Джинса

W = (2kTb / 2) 4R2, где

= 10 см — длина волны; k = 1,38 10–16 эрг/град — постоянная Больцмана; R = 7 • 1010 см — радиус Солнца; Tb = 50 тыс. К — яркостная температура спокойного Солнца на волне 10 см. Выполнив вычисления, получим

W = 2,6 1010 эрг/(с • Гц) = 2,6 • 103 Вт/Гц.
Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука