Читаем Вселенная. Вопросов больше, чем ответов полностью

Нельзя ли, однако, соединить достоинства рефракторов (от­сутствие вредных токов воздуха в закрытой трубе) и рефлекто­ров (большая светосила) в одной оптической системе, а заодно побороться с искажениями света (аберрациями) в оптических системах, вынуждающими ограничивать поле зрения телеско­пов? Первым эту задачу решил Шмидт, разместивший в центре кривизны главного сферического зеркала диафрагму с коррек­тирующей пластинкой сложной формы. Получилась система с большим полем зрения, светосильная и очень удобная в каче­стве астрографа (фотографического телескопа). Знаменитый Паломарский атлас неба представляет собой набор фотопласти­нок, полученных на обсерватории Маунт-Паломар с помощью 124-см телескопа системы Шмидта. Крупнейший из ныне суще­ствующих телескопов Шмидта имеет апертуру11,34 м.

В 1941 году Д.Д. Максутов предложил схему менискового телескопа, в котором аберрации главного зеркала компен­сируются выпукло-вогнутым стеклом — мениском, и вскоре построил первый телескоп такого рода — Грегори с мениско­вым корректором. При этом удалось чрезвычайно уменьшить длину инструмента, а качество изображения только возросло. Вносимый мениском хроматизм ничтожен, а прочие абер­рации (кома, астигматизм, кривизна поля, дисторсия) ском­пенсированы при правильном расчете схемы вполне удовлет­

1 То же, что входное отверстие телескопа. В простых системах аперту­ра равна диаметру объектива (линзового у рефракторов и зеркального у рефлекторов); в катадиоптрических системах Шмидта и Максутова апертура равна диаметру корректирующей пластинки и мениска соот­ветственно. — Примеч. авт.

24

— Чем и как изучают Вселенную —

ворительно. Однако более перспективной оказалась система Максутова-Кассегрена. В настоящее время построено очень много телескопов Шмидта и Максутова различных модифи­каций.

Желание сделать телескоп более технологичным в произ­водстве, с одной стороны, и еще больше уменьшить аберра­ции — с другой, привело к созданию систем Аргунова, Волосова, Клевцова, Чуриловского, Рихтера-Слефогта и др. Вообще чис­ло возможных телескопических систем очень велико, и любой оптик-расчетчик может увековечить свое имя, предложив совер­шенно новую схему.

— Часть I —

3. КРУПНЕЕ! ЕЩЕ КРУПНЕЕ!

Часто в магазинах, торгующих среди прочей оптики телескопа- ми, можно слышать вопрос покупателя: «А каково увеличение этого телескопа?» Нет ничего ошибочнее такого вопроса — по нему тор­говцы моментально идентифицируют неспециалиста, а дальше уж дело зависит от степени их добросовестности. Вопрос этот прежде всего лишен смысла: ведь увеличение телескопа равно частному от деления фокусного расстояния объектива1 на фокусное расстояние окуляра. Окуляры у телескопов сменные — короткофокусные на­зываются сильными, а длиннофокусные — слабыми окулярами. Смена окуляра меняет увеличение всей оптической системы.

Существует, правда, понятие минимального и максимально­го полезного увеличения. Минимальное полезное увеличение приблизительно равно апертуре телескопа, выраженной в мил­лиметрах, деленной на 6. Максимальное полезное увеличение примерно равно апертуре, умноженной на 1,5-2. Следовательно, если вы увидите в продаже телескоп с объективом шо-мм диа­метра и надписью «увеличение до 400 крат», не сомневайтесь — вас пытаются обмануть. «Разогнать» увеличение сверх макси­мального полезного в принципе нетрудно, но смысла в этом нет ни малейшего: масштабы изображения увеличатся, но никаких новых подробностей рассмотреть не удастся.

Какие характеристики оптической системы телескопа сле­дует считать важнейшими? Их две: проницающая способность и предельное разрешение (совсем как у радиоприемника — чув­ствительность и избирательность). И то и другое определяется апертурой телескопа. Чем больше света соберет объектив теле­скопа, тем выше будет его чувствительность (именно поэтому наши зрачки в темноте расширяются). Что до разрешающей способности, то любому фотографу известно: если сильно за- диафрагмировать объектив, уменьшив тем самым его апертуру,

1 Или эквивалентного фокусного расстояния для систем Кассегрена

и Грегори. — Примеч. авт.

26

— Чем и как изучают Вселенную —

сразу «полезет зерно». Зависимость разрешающей способности от апертуры здесь очень наглядна.

Итак, чем телескоп крупнее, тем он лучше? Да, но с рядом оговорок. Великолепная оптическая система, установленная на негодной монтировке, превратит телескоп в груду бесполезного металла и стекла. Колоссальное значение имеет место установки крупного инструмента. О световом загрязнении мы уже говори­ли, но и его отсутствие еще не решает всех проблем.

Атмосфера Земли, благодаря которой мы дышим и существу­ем, — страшный враг астронома. Она поглощает и рассеивает свет, в ней блуждают турбулентные потоки, портящие изобра­жение. Диск небесного светила (реальный для планеты и фик­тивный для звезды) размазывается в некую «медузу», пребыва­ющую в беспрестанном раздражающем колыхании. Серьезные наблюдения в таких условиях невозможны.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука