Что бы нам ни говорили, точность научной теории никогда не удается доказать. Если мы говорим, будто теория «верна», значит, нам не удалось ее опровергнуть. Признак хорошей научной теории — то, что ее сторонники должны придумать эксперимент или несколько экспериментов, в ходе которых теория может оказаться ошибочной, но не оказывается. Концепцию «опровергаемости», ставшую основой современной науки, ввел философ Карл Поппер. Это и есть главный недостаток так называемой теории разумного замысла. Недостаточно просто провозгласить, будто ваша теория верна, даже если она объясняет все наблюдаемые на сегодня феномены. Домашнее задание: придумать тест, а в идеале — много тестов, которые ваша теория может не пройти, и если она их не пройдет, вам придется признать, что вы заблуждались. Теория разумного замысла этого не делает.
Как обстоят дела с этим у теории струн? Вспомним некоторые популярные книги, вышедшие в последние годы, с названиями вроде «Даже не ошибка» (Питер Войт) или «Упрямая физика»[152].
Главная мысль обеих этих книг — что теорию струн можно привести в соответствие со стандартной моделью, причем нельзя поставить эксперимент, который бы ее опроверг. Отчасти сложность состоит в том, что единой версии теории струн не существует. Количество теорий струн на сегодняшний день колоссально — Смолин насчитывает 10 500, число настолько нелепое по размаху, что даже Знак, герой «Улицы Сезам», подумал бы о смене карьеры.
Похоже, что под теорию струн со всеми ее вариантами вполне можно подогнать любые искажения физических законов. А мы надеялись на нечто прямо противоположное. В идеале мы хотели получить фундаментальный физический закон, который не только опишет все существующие законы физики, но и не потребует для этого никакой подгонки теории.
В результате нет никакого определенного представления о том, что такое теория струн, а следовательно — как ее проверить. Как пишет Смолин: «На сегодня нет никакой реальной возможности проделать эксперимент, который определенно подтвердил бы или опроверг какое бы то ни было конкретное предположение этой теории». Мы готовы сделать крупную ставку на то, что в обозримом будущем не будет проделан никакой опыт по исследованию количества измерений во Вселенной, так что даже если мы живем не в трехмерном мире, надо вести себя так, словно измерений именно три.
Наблюдения показывают, что во Вселенной, похоже, существует невидимая, однако вездесущая темная энергия, которая подталкивает Вселенную к экспоненциальному расширению. Стандартная модель даже выдвигает кандидата, обладающего всеми качествами темной энергии. Это так называемая энергия вакуума, и, как мы видели, главная сложность состоит в том, что наша теория предполагает, будто ее примерно в 10100 раз больше, чем показывают наблюдения. Мы бы еще пережили, если бы темная энергия равнялась нулю — это как-то «естественно». Но такое масштабное расхождение как-то нервирует. Одна из самых крупных проблем — то, что теории струн и квантовой гравитации нужно очень уж видоизменять, чтобы подогнать под ту плотность темной энергии, которую мы видим. По нашим представлениям, Теорию Всего можно было бы считать хорошей, если бы плотность темной энергии следовала из нее сама собой, и это одна из первых проверок, которым следует подвергать подобные теории.
Пытаясь описать основные принципы, управляющие физикой, мы ловко обошли тот факт, что существует множество чисел, которые приходится просто вписывать от руки. Самые естественные числа — это те, которые представляют собой простое сочетание физических констант, а значит, мы были бы вправе предположить, будто все элементарные частицы обладают планковской массой — если бы у нас не было других данных. Нет, масса у них не планковская — поэтому мы вправе спросить, почему электрон настолько легче планковской массы, а нейтрино настолько легче электрона. Мы не знаем, откуда у электрона берется именно такой заряд, и пока что не знаем, почему сильное взаимодействие обладает именно такой силой.
В стандартную модель кроме этих коэффициентов входит еще уйма параметров, а в теории струи — еще больше. Например, мы упомянули о том, что различные нейтрино превращаются друг в друга и что существует некоторое численное соотношение, которое показывает вероятность этого перехода. Откуда берутся эти числа? Неизвестно. В целом в стандартную модель входит больше 20 свободных параметров — и это только стандартная модель. Среди них есть числа, которые с точки зрения всех наших фундаментальных теорий могут объясняться чем угодно.