Здесь чего-то не хватает. С одной стороны, мы уже видели в опыте с двумя щелями, что прямое или косвенное наблюдение электрона способно заставить его перейти из состояния неопределенности к поведению, подобающему частице. Если мы не будем тревожить электрон, глядя на него, он буквально пройдет через обе щели. А «выбирает» только одну он лишь в том случае, если у нас хватает наглости подглядывать за ним.
Если все обстоит именно так, в чем тогда принципиальное отличие шредингеровского кота? Это просто более сложная система, в которую по случаю входит не просто один электрон, но еще и радиоактивный образец, флакон яда и квадрильоны атомов,
составляющих кота. Те из нас, кто придерживается механистического взгляда на Вселенную, сочтут, что это приведет к невозможной ситуации, поскольку на самом деле мы должны посмотреть на вещи гораздо шире.
Поскольку все частицы во Вселенной в той или иной степени взаимодействуют, Вселенная в целом, в том числе и ученые, и их оборудование, есть одна гигантская волновая функция. Если воспринять это утверждение буквально, становится, мягко говоря, не по себе. Это значит, что все наблюдения, ощущения и поступки как таковые суть комбинация более чем одной возможности, просто вероятность одной из них гораздо, гораздо больше вероятности остальных.
Лично нам вероятность такой «вселенной суперпозиции» кажется настолько неприятной, что мы предпочтем жить во вселенной, где реальность формируется под воздействием сознания
Если копенгагенская интерпретация вас нервирует (и кто вас в этом упрекнет!?), не волнуйтесь. Это не единственное заведение в нашем городке. Существуют и другие интерпретации квантовой механики. Все они используют те же уравнения или по крайней мере получают те же результаты
В 1952 году Дэвид Бом, который тогда работал в Университете Сан-Паулу, выдвинул причинную
Бом предположил, что кроме волновой функции должны быть еще "скрытые переменные», ион был не одинок. Одним из первых сторонников и защитников скрытых переменных был сам Эйнштейн, которому следствия квантовой механики категорически не нравились.
Согласно Бому, скрытые переменные включают в себя качества вроде местоположения и скорости, которые, как говорит обычная квантовая механика, совершенно неопределенны. Это все равно что гонять на водных лыжах по зыбучему океану. В каждый конкретный момент лыжи двигаются с определенной скоростью и находятся в определенном месте. Однако если вы попытаетесь точно определить положение лыж, то увидите, что они хаотически болтаются туда-сюда. Подобным же образом волновая функция, согласно причинной интерпретации, «двигает» частицу, подталкивая ее в разные стороны, так что если бы мы проводили опыт с двумя щелями, то траектория электрона делала бы якобы случайные волнообразные колебания.
С одной стороны, причинная интерпретация очень утешает. Она заверяет нас, что абсолютная реальность существует, даже если мы не знаем, какова она сейчас и какова она будет в следующую секунду. Электрон на самом деле находится в каком-то одном определенном месте. Нет никакого мистера Хайда! Есть только доктор Джекил. Переодетый!
Более того, причинная интерпретация решает очень важную проблему, с которой не справилась, копенгагенская. Согласно Бому, никакого «коллапса волновой функции» не происходит. Волновая функция никуда не девается, потому что, делая измерения, мы всего-навсего обнаруживаем, где частица была все это время. Мы все равно влияем на нее самим актом наблюдения, но так, что это ничуть не противоречит классической интуиции.
Мы уже упоминали, что причинная интерпретация получает те же результаты, что и обычная квантовая механика. Это и плюс, и минус. Подобно копенгагенской интерпретации, причинная интерпретация Бома требует, чтобы сигналы можно было отправлять со скоростью выше скорости света (пусть и крайне редко).