Читаем Вселенная работает как часы. Лаплас. Небесная механика. полностью

F = d/dt(m • v).

Любая сила, воздействующая на тело, вызывает изменение движения. Предположим, что масса тела постоянна (тогда можно извлечь m из производной), мы находим известное уравнение: F= m • а. Эта формула в первый раз появилась в математическом трактате под названием Phoronomia («Форономия»), опубликованном в 1716 году Якобом Германом (1678- 1733), который опирался на практичный способ записи Лейбница. Формула получила известность благодаря Эйлеру, который привел ее в своем труде«Механика, или Наука о движении, изложенная аналитически» (1736). В течение большей половины XVIII века математики использовали более общую формулу, предложенную д'Аламбером в «Трактате о динамике» (1743), которая, естественно, носит имя ученого, — принцип д'Аламбера.

Аналитическая механика представляла собой значительный прогресс по сравнению с механикой Ньютона. Чем дальше математика отходила от геометрических методов к аналитическим, тем возможнее было изучить физические феномены с помощью дифференциальных уравнений, их описывающих.

После открытия Ньютоном дифференциального уравнения «сила равна массе, умноженной на ускорение», которое управляет движением множества точек и твердых тел, Эйлер сформулировал систему дифференциальных уравнений, описывавших движение такой среды, как вода, воздух или иные жидкие невязкие тела.

Позднее Лагранж сконцентрировал свое внимание на звуковых волнах и акустических уравнениях. В течение XVIII века математики углубляли свое понимание мира и предлагали новые дифференциальные уравнения для изучения различных феноменов. При помощи этого вида уравнений было смоделировано поведение твердых и жидких тел, волн и самой Природы. Математический анализ казался бесконечно обширным.

Однако если составление уравнения для описания феномена может быть легкой задачей, то поиск решения может оказаться не под силу человеку. Самостоятельно решить дифференциальное уравнение так же, как алгебраическое, не удается почти никогда. Последователи Ньютона сформулировали уравнения и смогли решить часть из них — особенно те, которые были связаны с импульсом подброшенной частицы или движением маятника, — но многие уравнения им не поддавались. Для понимания физических феноменов требовалось решать все более сложные дифференциальные уравнения.

Существует два вида дифференциальных уравнений: линейные и нелинейные. Для уравнений первого вида сумма двух решений также оказывается решением. Кроме того, в линейном дифференциальном уравнении ни неизвестная функция, ни ее производная не могут быть возведены в степень 0 или 1. Линейные дифференциальные уравнения описывают феномены, в которых результат суммы причин — это сумма последствий каждой из них, взятой отдельно. Зато в нелинейных уравнениях не существует пропорциональной связи между причинами и следствиями, и пересечение двух разных причин может дать неожиданный результат. Как мы увидим дальше, эта нелинейность сопутствовала самым сложным задачам механики, за которые брался Лаплас.

Людовик XIV во время визита в Академию наук в 1671 году, через пять лет после ее создания.

Гравюра, изображающая Лапласа, из альбома «Великие люди и великие факты Французской революции» (1789-1804), выпущенного к столетию революции в 1889 году.

План Королевской военной школы в Париже, составленный Жаком Анжем Габриэлем в 1751 году.

ЛАГРАНЖ: ГЕОМЕТР, НЕНАВИДЕВШИЙ ГЕОМЕТРИЮ
Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука