Это дает нам чудесный инструмент для учета того, как быстро нужно бросить что-то в воздухе, чтобы этот объект покинул Землю, поскольку если он в конечном итоге улетит бесконечно далеко от Земли, его суммарная энергия должна быть больше или равна нулю. Затем я просто должен убедиться, что его суммарная гравитационная энергия во время, когда он покидает руку, больше или равна нулю. Поскольку я могу контролировать только один аспект его суммарной энергии, а именно скорость, с которой я выпускаю его из руки — все, что нужно сделать, это найти волшебную скорость, где положительная кинетическая энергия мяча равна отрицательной потенциальной энергии, которую он имеет из-за притяжения к земной поверхности. И кинетическая, и потенциальная энергия мяча строго зависят от массы мяча, которая, следовательно, нейтрализуется, когда эти две величины уравниваются, и можно найти единственную «скорость отрыва» для всех объектов с поверхности Земли, а именно около 7 миль <11,2 км> в секунду, когда суммарная гравитационная энергия объекта точно равна нулю.
Что же все это дает для Вселенной в целом, и инфляции в частности, спросите вы? Что ж, точно такой же расчет, как я только что описал для мяча, брошенного рукой с поверхности Земли, относится к каждому объекту в нашей расширяющейся Вселенной.
Рассмотрим сферическую область нашей Вселенной с центром в месте нашего расположения (в галактике Млечный Путь) и достаточно большую, чтобы охватить много галактик, но достаточно маленькую, чтобы она вполне уложилась в наибольших расстояниях, которые мы можем наблюдать сегодня:
Если эта область достаточно велика, но не слишком, то галактики на ее краю будут удаляться от нас равномерно из-за расширения Хаббла, но их скорости будут гораздо меньше, чем скорость света. В этом случае применимы законы Ньютона, и мы можем игнорировать влияние специальной и общей теории относительности. Другими словами, любой объект подчиняется законам физики, идентичным тем, которые описывают мячи, пытающиеся покинуть Землю, как я только что представил.
Рассмотрим галактику, показанную выше, удаляющуюся от центра распространения, как показано на рисунке. Теперь, как и для мяча с Земли, мы можем спросить, сможет ли галактика вырваться из гравитационного притяжения всех других галактик внутри сферы. И расчет, который мы бы выполнили, чтобы найти ответ, в точности такое же, как при расчете, выполняемом для мяча. Мы просто рассчитываем суммарную гравитационную энергию галактики, основываясь на ее движении наружу (что придает ей положительную энергию), и гравитационном притяжении ее соседей (обеспечивающих отрицательную часть энергии). Если ее суммарная энергия больше нуля, она будет убегать в бесконечность, а если меньше нуля, она остановится и упадет внутрь.
Примечательно, теперь можно показать, что мы можем переписать простое ньютоновское уравнение для суммарной гравитационной энергии этой галактики так, что
Так что же мы тогда найдем? В плоской Вселенной, и только в плоской Вселенной, средняя суммарная ньютоновская гравитационная энергия каждого объекта при расширении точно
Это то, что делает плоскую Вселенную такой особенной. В такой Вселенной положительная энергия движения в точности компенсируется отрицательной энергией гравитационного притяжения.
Когда мы начинаем усложнять, позволяя пустому пространству иметь энергию, простая ньютоновская аналогия с мячом, подброшенным в воздух, становится некорректной, но вывод остается по существу таким же самым. В плоской Вселенной, даже с небольшой космологической постоянной, при условии, что масштаб достаточно мал, чтобы скорости были намного меньше скорости света, ньютоновская гравитационная энергия, связанная с каждым объектом во Вселенной, равна нулю.
Фактически, с энергией вакуума «бесплатный обед» Гута становится еще более драматичным. Когда каждая область Вселенной расширяется до всё больших размеров, она становится все ближе и ближе к плоской, так что суммарная ньютоновская гравитационная энергия всего, что получается, после того как энергия вакуума во время инфляции преобразуется в материю и излучение, становится точно равной нулю.
Но вы все равно можете спросить, откуда берется вся та энергия, которая поддерживает плотность энергии постоянной при инфляции, когда Вселенная растет в геометрической прогрессии? Здесь действует еще один замечательный аспект общей теории относительности. Мало того, что гравитационная энергия объектов может быть отрицательной, но и их релятивистское «давление» может быть отрицательным.