Но избавиться от него не так просто. Это все равно что пытаться затолкать зубную пасту обратно в тюбик после того как вы ее выдавили. Все дело в том, что сейчас у нас совершенно иное представление о космологической постоянной, так что, если бы Эйнштейн не добавил этот член, то за прошедшие годы кто-то должен был бы это сделать.
Перемещение постоянной Эйнштейна из левой части его уравнений в правую — маленький шаг для математика, но гигантский скачок для физика. Хотя математически это сделать пустяк, как только этот член оказывается справа, где находятся все члены, вносящие вклад в энергию Вселенной, он представляет нечто совершенно отличное с физической точки зрения, а именно новый вклад в суммарную энергию. Но какого рода материю может отражать такой член?
Ответ —
Под
Итак, это заставляет космологическую постоянную Эйнштейна казаться еще безумнее! Любой четвероклассник скажет вам, сколько энергии содержит ничто, даже если он не знает, что такое энергия. Ответ должен быть нисколько.
Увы, большинство четвероклассников не учили квантовую механику, а также не изучали теорию относительности. Ибо, если учесть результаты специальной теории относительности Эйнштейна в квантовом пространстве, пустое пространство становится гораздо более странным, чем это было раньше. Фактически настолько странным, что даже физики, впервые обнаружившие и проанализировавшие это новое свойство, были почти готовы поверить, что оно на самом деле существует в реальном мире.
Первым человеком, успешно объединившим относительность и квантовую механику, был блестящий, немногословный британский физик-теоретик Поль Дирак, который ранее сам сыграл ведущую роль в развитии квантовой механики как теории.
Квантовая механика была разработана в период с 1912 по 1927 год, в первую очередь благодаря работам гениального и знаменитого датского физика Нильса Бора, блестящего, молодого, энергичного австрийского физика Эрвина Шредингера и немецкого физика Вернера Гейзенберга. Квантовый мир, впервые предложенный Бором и математически уточненный Шредингером и Гейзенбергом, бросает вызов всем здравомыслящим представлениям, основанным на нашем знании объектов в человеческих масштабах. Бор первым предположил, что электроны в атомах вращаются вокруг центрального ядра, как планеты вокруг Солнца, но показал, что наблюдаемые правила атомных спектров (частот света, испускаемого различными элементами) можно понять, только если электроны каким-то образом ограничены наличием стабильных орбит с фиксированным рядом «квантовых уровней» и не могут свободно постепенно приближаться к ядру. Они могут двигаться между уровнями, поглощая или испуская только дискретные частоты, или кванты, света — те самые кванты, которые в 1905 году Макс Планк впервые предложил для понимания формы излучения горячих предметов.
Однако «правила квантования» Бора были довольно узкоспециализированы. В 1920-х Шредингер и Гейзенберг независимо показали, что эти правила можно было получить из основных принципов, если электроны подчинялись правилам динамики, которые отличались от тех, что применяются для макроскопических объектов, таких как бейсбольные мячи. Электроны могут вести себя и как волны, и как частицы, как бы распространяясь в пространстве (отсюда «волновая функция» Шредингера для электронов), и было показано, что измерения свойств электронов дают лишь вероятностные результаты, с различными комбинациями разных свойств, которые не могут быть точно измерены в одно и то же время (отсюда «принцип неопределенности» Гейзенберга).
Дирак показал, что математика, предлагаемая Гейзенбергом для описания квантовых систем (за которую Гейзенберг получил в 1932 году Нобелевскую премию), может быть получена по точной аналогии с известными законами, управляющими динамикой классических макроскопических объектов. Кроме того, позже ему также удалось продемонстрировать, что математическую «волновую механику» Шредингера также можно получить похожим образом, и она была формально эквивалентна формулировке Гейзенберга. Но Дирак также знал, что замечательная квантовая механика Бора, Гейзенберга и Шредингера применима только к системам, где были уместны законы Ньютона (а не теория относительности Эйнштейна), законы, управляющие классическими системами, по аналогии с которыми были построены квантовые системы.