Мы знаем, насколько быстро Солнце обращается вокруг центра Галактики. Мы можем рассчитать скорость звезд и газовых облаков в других галактиках. Эти скорости, особенно скорости «отщепенцев», вращающихся вдали от центра Галактики, дальше большинства других звезд, подозрительно высоки. Если бы внешний газ и звезды испытывали на себе только силу притяжения того, что мы видим, они бы уже покинули свои орбиты, как Нептун и Плутон покинули бы сферу влияния Солнца, если бы двигались так быстро, как Земля. Такие высокие наблюдаемые скорости говорят нам о том, что галактики окружает тяжелое невидимое гало: подобно тому как если бы Плутон двигался так же быстро, как Земля (но при этом оставался на своей орбите), нам бы пришлось предположить существование тяжелой невидимой оболочки, располагающейся вне орбиты Земли, но внутри орбиты Плутона.
Если бы не существовало большого количества темной материи, галактики были бы нестабильны и разлетелись на части. Красивые изображения дисков и спиралей представляют собой то, что, в сущности, является «светящимся осадком», который удерживают в гравитационной ловушке огромные скопления темных объектов, о природе которых мы знаем очень мало. Галактики в десять раз больше и тяжелее, чем мы привыкли думать. Тот же самый аргумент применим и к большему масштабу, к целым скоплениям галактик, которые в поперечнике занимают несколько миллионов св. лет. Чтобы удержать их вместе, требуется сила притяжения материи, которой должно быть раз в десять больше, чем мы видим.
Конечно, существует одно допущение, которое лежит в основе всех этих предположений о темной материи, а именно: мы считаем, что знаем силу притяжения, которую дают видимые нам объекты. Внутреннее движение внутри галактик и их скоплений по сравнению со скоростью света является медленным, поэтому никаких релятивистских усложнений нет. Следовательно, мы просто используем закон обратных квадратов Ньютона, который говорит о том, что если расстояние между нами и какой-то массой увеличивается вдвое, то сила притяжения становится в четыре раза слабее. Некоторые скептики могут нам напомнить, что этот закон по-настоящему был проверен только в пределах нашей Солнечной системы, и его приходится принимать на веру, когда речь идет о масштабах в сотни миллионов раз больших. На самом деле сейчас у нас есть весьма заманчивые данные (см. главу 10), указывающие на то, что в масштабах всей Вселенной силу тяготения, возможно, перекрывает другая сила, которая вызывает отталкивание, а не притяжение.
Мы должны сохранять объективность (или, по крайней мере, оставить пространство для маневра), подходя к возможности того, что нашим представлениям о тяготении потребуется переоценка. Если действующая на больших расстояниях сила будет мощнее, чем мы ожидаем, опираясь на закон обратных квадратов (т. е. если она не будет становиться в четыре раза слабее при увеличении расстояния в два раза), то будет абсолютно ясно, что вопрос о темной материи требуется пересмотреть. Но мы не должны отказываться от своей теории тяготения без борьбы. У нас может возникнуть искушение так поступить, если не найдется вероятных кандидатов для темной материи. Тем не менее вариантов может быть много; только если все они окажутся несостоятельными, мы должны быть готовы к тому, чтобы отвергнуть и Ньютона, и Эйнштейна{10}.
Есть и другие признаки, которые говорят о наличии темной материи. Все перемещающееся под воздействием силы тяготения вещество, светящееся или темное, отклоняет свет, поэтому скопления можно «взвесить», изучив, насколько сильно они искажают лучи света, проходящие сквозь них. Действительно, отклонение света звезд, которое Эддингтон и другие ученые наблюдали во время полного солнечного затмения 1919 г., стало одной из первых широко известных проверок ОТО, которая принесла Эйнштейну мировую известность. Космический телескоп имени Хаббла сделал впечатляющие фотографии некоторых скоплений галактик, отстоящих от нас примерно на миллиард св. лет. На этих фотографиях мы можем видеть много тусклых полосок и арок. Каждая из них – это далекая галактика, находящаяся в несколько раз дальше самого скопления. Мы смотрим на нее через искажающую линзу. Обычный узор на обоях выглядит искаженным, если посмотреть на него через искривленный кусок стекла. Скопление выступает в роли именно такой «линзы», которая фокусирует проходящий через нее свет. Галактики, входящие в скопления, даже все вместе недостаточно тяжелы, чтобы создать такое искажение. Чтобы значительно искривить свет и вызвать явное искажение изображений, находящихся позади галактик, скопление должно быть в 10 раз тяжелее того, что мы видим. Эти огромные естественные линзы дают дополнительное преимущество астрономам, которые интересуются эволюцией галактик, так как позволяют увидеть очень отдаленные галактики, которые иначе были бы слишком тусклыми, чтобы мы могли за ними наблюдать.