Для нас важны два глубоких свойства движения, осознание которых началось с Галилея: относительность и инерция. Галилей усматривает их в природе вещей с помощью того, что ему неизменно удавалось с блеском: он извлекает «идеальные» следствия не из идеальных, а вполне реальных опытов, а также применяет логический анализ путем постановки мысленных экспериментов. Успехи в таком подходе к исследованию природы, собственно говоря, и снискали ему титул основоположника научного метода (что, впрочем, известно нам сейчас, но не было известно ему самому). Если художник рисует натуру, находясь вместе с ней в каюте на корабле, который плавает в виду берега, то при идеальном состоянии моря, рассуждает Галилей, художник может забыть, что он находится не на берегу, а на корабле; ничто не будет мешать созданию картины. Но на взгляд людей, стоящих на берегу, рука художника участвует в движении, включающем движение самого корабля. Следовательно, если корабль не качается и не дергается, его движение не оказывает никакого влияния на происходящее в каюте. Отсюда происходят две идеи: одну впоследствии стали называть принципом относительности, а другая, важная для Галилея (и неизменно важная с тех пор), – независимость движений, т. е. движение кисти относительно холста и движение холста относительно берега независимы. Развивая именно этот тезис, Галилей стал первым, кто теоретически получил параболу для «стрелы» (тела, брошенного под углом к горизонту). Исходя из того, что горизонтальное и вертикальное движения независимы, он замечает, что горизонтальное движение равномерно, а вертикальное ускоренно; их сложение и дает параболу – вывод, который Галилей считал одним из главных результатов своей теории движения.
Галилею принадлежит и сама идея равноускоренного падения, причем одинакового для всех тел[7]. Доминировавшая до того точка зрения опиралась на представление о естественности равномерного движения; это, по-видимому, должно было означать, что после разжатия руки яблоко сразу приобретает ту скорость, с которой ударится о землю. Исходный же пункт рассуждений Галилея состоял в том, что падающие тела, когда им «ничто не мешает» (что тоже не так просто организовать), изменяют скорость по мере того, как падают. Но как меняется скорость? Галилей установил, что скорость увеличивается в течение всего падения и что тело последовательно проходит «через все градусы скорости» (этот подход, существенно расходящийся со взглядами Аристотеля, присутствует уже здесь, хотя и не принадлежит лично Галилею: приписывать качествам определенные «градусы» – не античная, а средневековая идея). Довольно долго он думал, что скорость увеличивается равными порциями через равные отрезки пути, но потом логическими рассуждениями отверг эту идею, а вместо этого показал, что скорость растет равными порциями за равные промежутки времени – пропорционально времени, как мы бы сейчас сказали. Я часто напоминаю себе, что все это происходило в отсутствие часов, хоть сколько-нибудь пригодных для точных измерений, и – что, может быть, даже более важно – до формализации понятия ускорения[8]. Три с половиной столетия спустя, 2 августа 1971 г., командир «Аполлона-15» Дейв Скотт, стоя на поверхности Луны перед своим лунным модулем, произнес, глядя в камеру:
Вот в левой руке у меня перо, а в правой – молоток. И можно сказать, что одной из причин, по которой мы сюда добрались, был джентльмен по имени Галилео, живший очень давно, который сделал довольно существенное открытие о падающих телах в гравитационных полях. И мы подумали: где найти лучшее место, чтобы подтвердить его результаты, как не на Луне? Так что мы решили, что попробуем это вам сейчас показать. ‹…› Я отпущу оба предмета, и, будем надеяться, они достигнут поверхности одновременно.
[Он разжимает перчатки – молоток и соколиное перо падают на лунную поверхность в согласии с ожиданиями.]
Как вам такое?!
Справедливости ради надо сказать, что Галилей развивал не идею притяжения, а тезис о естественности равноускоренного движения; тем не менее одинаковое ускорение для всех падающих тел в отсутствие сопротивления воздуха – его открытие.
Как тебе такое, Галилео Галилей?