Пользуясь этим методом, столь простым в теории, но не на практике, стало возможным увеличить энергию частиц от нескольких МэВ в старых циклотронах до нескольких сотен МэВ. На этом принципе больше тридцати лет работает циклотрон ЦЕРН'а с энергией 600 МэВ. Спрашивается, почему нельзя подняться еще выше? Трудность заключается в том, что чем выше энергия частицы, тем больше радиус ее траектории. Она описывает спираль, разворачиваясь из центра зазора с мгновенным радиусом, пропорциональным импульсу и обратно пропорциональным магнитному полю. С увеличением энергии (а значит, и импульса) радиус траектории растет, поверхность, покрываемая спиралью, тоже, что требует недопустимого увеличения веса магнита.
Поэтому пришлось изобрести машину нового типа — протонный синхротрон, в котором частота электрического поля и величина магнитного поля модулируются одновременно таким образом, чтобы сохранить не только резонансное условие, но еще и постоянный радиус для орбиты частицы. Тогда достаточно поддерживать магнитное поле в узком кольце, окружающем орбиту, что, конечно, уменьшает значительно вес магнита. Таков принцип цернского суперсинхротрона SPS, который ускоряет протоны до энергии в 450 ГэВ (1 ГэВ = 1000000000 эВ).
С помощью очень остроумного изобретения, сделанного в ЦЕРН'е Симоном ван дер Меером (Simon van der Мееr), описание которого завлекло бы нас слишком далеко, в 1983 году две группы физиков под руководством Карло Руббиа (Carlo Rubbia) и Пьера Дарьюла (Pierre Darriulat) обнаружили в ЦЕРН'е так называемые промежуточные бозоны
А как обстоит дело с электронными ускорителями для очень высоких энергий? — Гораздо сложнее. Это связано с тем, что масса электрона меньше массы протона приблизительно в 2000 раз. Можно показать, что энергия, излучаемая заряженной частицей в кругообразном движении, обратно пропорциональна четвертой степени ее массы покоя.
Для энергий электронов, сравнимых с энергиями протонов ЦЕРН'а или Фермилаба, потери на излучение становятся недопустимо большими. Поэтому для электронного ускорителя LEP (Large Electron-Positron (collider)), который теперь запущен в ЦЕРН'е, для первой очереди была выбрана более скромная энергия 50 ГэВ, которая позже будет доведена до 100 ГэВ. Даже это стало возможным только благодаря очень значительному увеличению радиуса машины, которое уменьшает центростремительное ускорение частиц, а значит, и излучение.
Одним из замечательных свойств электромагнитного излучения вращающихся ультрарелятивистских частиц, масса которых во много раз превышает их массу покоя, является его непомерная спектральная ширина. Излучение содержит не только частоту самого вращения, но и чрезвычайно высокие гармоники, простираясь до оптического, ультрафиолетового и даже рентгеновского диапазона. Эта особенность электронных синхротронов, считавшаяся вначале простым курьезом и даже неудобством, приобрела недавно огромное значение, сделав их мощными и непрерывными источниками рентгеновского излучения. Дошло до того, что строятся электронные синхротроны, специально предназначенные для применения этого излучения в физике твердого тела, химии и биологии.
Теория синхротронного излучения была хорошо известна в 1947 году. Мне пришло в голову, что число «жестких» (коротковолновых) фотонов, испускаемых каждым электроном за один поворот, невелико и может сильно флуктуировать, — факт, который классическая теория излучения была неспособна учесть. Я предпринял полуклассической расчет, обратный обыкновенной процедуре: описал движение электрона
Начальник отдела ускорителей в КАЭ был столь восхищен результатом, что захотел представить его на конференции в Америке. Отговорил я его не без труда.