Читаем Воздушно-реактивные двигатели полностью

Другое дело, когда скорость потока меньше скорости звука; плотность воздуха при торможении растет в этом случае медленнее, чем уменьшается скорость течения воздуха. Вот почему при этом воздух часто считают вообще несжимаемым. Вследствие этого дозвуковой диффузор представляет собой расширяющуюся трубу. Очевидно, что в сверхзвуковом диффузоре такая расширяющаяся труба должна быть во второй его части. Действительно, когда скорость воздуха в первой, сужающейся части сверхзвукового диффузора, постепенно уменьшаясь, сравняется со скоростью звука в воздухе, то для дальнейшего торможения воздуха понадобится дозвуковой диффузор. Поэтому сверхзвуковой диффузор представляет собой трубу, как бы составленную из двух труб: сначала сужающейся, а потом расширяющейся. В самой узкой части трубы, называемой горловиной диффузора, скорость движения воздуха должна в точности равняться скорости звука в этом воздухе.

Легко видеть, что такую же форму должна иметь труба, в которой мы захотели бы осуществить обратный процесс — разогнать дозвуковой поток до сверхзвуковой скорости. Такое сверхзвуковое сопло (соплом называют устройство для увеличения скорости течения газа) тоже должно было бы иметь вначале сужающуюся часть, а затем расширяющуюся. В сужающейся части скорость потока постепенно будет расти, пока в самой узкой части — горловине сопла — не станет в точности равной скорости звука. Дальнейшее увеличение скорости выше скорости звука будет происходить в расширяющейся части. Такие сверхзвуковые сопла — их называют обычно соплами Лаваля по имени известного шведского конструктора паровых турбин — широко применяются в технике. Находят они применение и в реактивной технике, где часто встречаются сверхзвуковые скорости течения газов. В частности, таким должно быть, очевидно, и сопло сверхзвукового прямоточного двигателя. Поэтому сверхзвуковой прямоточный воздушно-реактивный двигатель иногда и рисуют схематически в виде цилиндрической трубы, имеющей спереди сверхзвуковой диффузор в виде двух конусов (сужающегося и расширяющегося), а сзади — сверхзвуковое сопло такой же формы (см, рис. 54).

Однако в действительности таких двигателей не существует. Объясняется это тем, что осуществить постепенное, плавное торможение сверхзвукового потока с помощью сверхзвукового диффузора пока еще не удалось. Опыт показывает, что сверхзвуковую струю не удается «заманить» в такой диффузор. Оказывается, что в сверхзвуковой струе еще перед диффузором возникает так называемый скачок уплотнения, или ударная волна, в которой происходит резкое, скачкообразное торможение потока и переход от сверхзвуковой к дозвуковой скорости. В результате этого в диффузор входит воздух, имеющий уже дозвуковую скорость.

Образование скачка уплотнения перед входом в сверхзвуковой прямоточный воздушно-реактивный двигатель играет такую большую роль в теории этих двигателей, так сильно сказывается на их характеристиках, что стоит подробнее рассмотреть физические явления, происходящие в скачке.

Физическая природа скачка уплотнения связана с особенностями распространения возмущений, т. е. изменений давления в воздухе или в любом другом газе. Представьте себе снова, что нас окружает синий воздушный океан, окраска которого меняется в зависимости от изменения давления. Если в этом океане нет источников возмущений, в результате которых изменяется давление воздуха, то цвет океана всюду ровный, светлый, давление везде одинаково. Но вот внезапно в этом океане появилось небольшое темное пятно. Это значит, что в этом месте внезапно повысилось давление, например, в результате сгорания ничтожной крупинки пороха. И тотчас же во все стороны от этого пятна начнет распространяться по ранее невозмущенному океану темная волна повышающегося давления. Точно в очаге возмущения вдруг забил синий фонтан, заливающий все вокруг. Даже в местах, далеко отстоящих от этого «фонтана», цвет океана потемнеет, когда туда дойдет возмущение в виде волны повышенного давления.

Мы на каждом шагу в повседневной жизни встречаемся с этими волнами возмущения в воздухе, только мы их не видим, а... слышим. В самом деле, если бы в окружающем нас воздухе не распространялись возмущения, то мы лишились бы всего царства звуков, мир стал бы безмолвным. Звук — это и есть возмущение, очень небольшое по величине. Когда это возмущение доходит до нашего уха, то оно действует на барабанную перепонку и воспринимается нами как звук. На высоте в сотни километров, где воздух крайне разрежен, мы не услышали бы артиллерийского выстрела даже в том случае, если бы пушка стреляла на расстоянии одного метра от нашего уха — там не по чему распространяться возмущениям.

Перейти на страницу:

Все книги серии Научно-популярная библиотека солдата и матроса

День и ночь. Времена года
День и ночь. Времена года

В 40–50-х годах прошлого века в СССР публиковалось несколько научно-популярных серий. Самая известная — серия «Научно-популярная библиотека». Параллельно с этой серией выпускалась серия «Научно-популярная библиотека солдата и матроса», издававшаяся военным, а не гражданским, издательством.Перед вами — одна из книг этой серии: «День и ночь. Времена года».В ней в очень простой и увлекательной форме даны основы окружающего нас мира — к которым мы настолько привыкли, что даже забываем задать себе очевидные, но не такие уж и простые для ответа вопросы…В этой небольшой книжке мы постараемся ответить на два вопроса — почему день сменяется ночью, а ночь днём и почему изменяются времена года. Попутно придётся ответить и на некоторые другие вопросы.

Р. В. Куницкий , Ростислав Владимирович Куницкий

Детская образовательная литература / Научная литература / Прочая научная литература / Книги Для Детей / Образование и наука

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки