Читаем Воображаемая жизнь (ЛП) полностью

Есть несколько вариантов ответа на этот вопрос. Один из них — просто заметить, что существует ряд систем, в которых суперземель нет, и утверждать, что наша просто случайно является одной из них. Другой подход состоит в изучении компьютерных моделей, описывающих формирование Солнечной системы, и в поиске процессов, которые могли бы уничтожить какие-то суперземли, которые в ней когда-то были. В некоторых моделях, например, движение планет-гигантов смещает суперземли в сторону Солнца. В других случаях гравитационное «перетягивание каната», продолжавшееся во времена образования планет, выбросило суперземли из системы, превратив их в планеты-сироты, которые мы обсуждали в предыдущей главе. Однако какова бы ни была причина — образовались ли они, а затем были уничтожены, или же вообще никогда не образовывались, — в настоящее время в нашей Солнечной системе суперземель нет.

Это не является нарушением принципа Коперника. В нашей планетной системе действуют те же законы, что и везде, но в особенностях того, как зарождалась наша система, есть нечто, породившее иной результат по сравнению с тем, что мы наблюдаем в других системах. Возможно, распределение массы в облаке туманности нашей системы было немного иным; возможно, проходящая звезда потревожила газы в туманности во время формирования планет. Какова бы ни была та причина, рядом с нами нет суперземли, которую можно изучать.

Очень сильная гравитация

Отсутствие суперземель в Солнечной системе не означает, что мы не можем установить, какие условия могли бы существовать на одной из этих планет. Давайте начнём с наиболее очевидного различия между суперземлёй и нашей Землёй: с гравитации. Согласно закону всемирного тяготения Ньютона, сила притяжения, действующая на любой объект, прямо пропорциональна его массе — удвойте массу планеты, сохранив при этом её геометрические размеры, и вы удвоите силу тяготения на её поверхности. Закон также гласит, что сила уменьшается обратно пропорционально квадрату расстояния — удвойте радиус планеты, сохранив её массу неизменной, и сила притяжения на её поверхности составит четверть от той, что была.

Эти две характеристики определяют силу тяжести на поверхности любой планеты. Например, прямо сейчас Земля воздействует на вас направленной вниз силой тяготения — вот почему вы не улетаете в космос. Величина силы зависит от массы Земли и вашего расстояния от центра Земли (т. е. радиуса планеты). Фактически, одним из величайших триумфов закона Ньютона является то, что если вы примените его к массе и радиусу Земли, вы получите стандартные 32 фута в секунду в квадрате (9,8 м/сек2), что соответствует ускорению любого объекта, падающего на поверхность Земли.

Таким образом, определение силы тяжести на гипотетической планете предполагает простой ньютоновский расчёт. Рассмотрим, например, суперземлю в восемь раз массивнее Земли, но с той же плотностью. Её радиус был бы в два раза больше земного. Таким образом, при определении силы тяжести на поверхности планеты необходимо было бы учитывать два конкурирующих эффекта: большая масса увеличивает силу, в то время как больший радиус уменьшает её. В результате на этой планете вы будете весить в два раза больше, чем здесь, на Земле.

Вполне возможно, ситуация на настоящей суперземле была бы не такой простой. Увеличенная сила тяжести, скорее всего, сжала бы материалы в теле планеты, так что её радиус превышал бы земной меньше, чем в два раза. Это, в свою очередь, приведёт к увеличению силы тяжести на поверхности и, следовательно, к увеличению вашего веса.

Увеличенная сила тяжести также повлияла бы на состав атмосферы на суперземле. Например, она усложнила бы диссипацию атмосферы, которую мы обсуждали для планеты Златовласки в главе 9. Таким образом, вполне вероятно, что атмосфера суперземли сохранит такие лёгкие газы, как гелий и водород, собственный запас которых Земля большей частью растеряла.

Кроме того, возросшая сила тяжести увеличила бы давление на атмосферу и океаны планеты. Самый простой способ убедиться в этом — вернуться к примеру, который мы использовали в главе 8, где мы говорили о колонне с основанием в виде квадрата со стороной в 1 дюйм (около 2,5 см), которая поднимается от вашей руки до космоса. Давление на этот 1 квадратный дюйм вашей руки будет равно весу воды и воздуха в колонке. Это означает, что если бы в атмосфере суперземли находилась та же масса воздуха и воды, что и на Земле, где давление в колонне составляет 14,7 фунтов (6,5 кг), то давление на 1 квадратный дюйм вашей руки составляло бы около 30 фунтов (14 кг). Это, в свою очередь, означает, что явление, которое мы назвали пределом льда X в главе 8, на суперземлях будет наблюдаться в более мелких океанах, чем на планете вроде той, что мы назвали Нептунией.

Жизнь и выход на сушу

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука