Читаем Воображаемая жизнь (ЛП) полностью

Однако в 1859 году два немецких учёных, каждый из которых был известен главным образом своими прочими достижениями, встретились в лаборатории в Гейдельберге и изменили наш подход к анализу Вселенной. Густав Кирхгоф (1824-77) хорошо известен студентам-физикам как автор свода законов, позволяющих анализировать сложные электрические цепи, а Роберт Бунзен (1811-99) изобрел бунзеновскую горелку, которая есть в любой самой простой химической лаборатории. Они ввели в употребление процесс, в ходе которого свет от нагретого образца чистого материала пропускался через стеклянную призму для разделения цветов. Вместо того, чтобы получить ожидаемый непрерывный спектр (как радуга) они обнаружили, что каждый химический элемент даёт характерный, уникальный и хорошо распознаваемый набор определённых цветов. Эта совокупность называется спектром излучения, и поглощению фотонов определённых энергий соответствует определённый спектр. Раздел науки, посвященный изучению этих спектров, называется спектроскопией.

На самом деле тот факт, что химические элементы излучают свет определённого цвета, вам знаком. Вы когда-нибудь замечали, что некоторые уличные фонари излучают желтоватый свет? Такие натриевые лампы часто используются в районах, где часто бывают туманы, потому что их цвет обеспечивает наилучшую видимость в таких условиях.

Поскольку каждый химический элемент излучает свет с характерным набором цветов, если мы увидим этот оптический «отпечаток» в свете от какого-то источника, то мы можем быть уверенными, что источник содержит соответствующий химический элемент. Смысл этого так называемого спектроскопического анализа заключается в том, что неважно, насколько удалён источник света от детектора. Это может быть несколько дюймов или же несколько миллиардов световых лет. Как только спектроскопический «отпечаток» сформируется, он останется в луче света навсегда.

Здесь есть один забавный побочный эффект: в наше время сложный спектроскоп может поставляться с собственным встроенным компьютером и стоить много тысяч (и даже сотен тысяч) долларов. Кирхгоф и Бунзен построили первый спектроскоп из пары старых подзорных труб и (хотите — верьте, хотите — нет) коробки из-под сигар.

Лишь в начале 20-го века учёные, создавшие дисциплину под названием квантовая механика, выяснили, наконец, каким образом атомы образуют спектры. Вот упрощённая картина атома, которую они разработали: в отличие от планет в солнечной системе, электроны в атоме не могут иметь орбиты в произвольных местах. Их можно найти только на определённых расстояниях от ядра — на так называемых энергетических уровнях. Каждый из них обладает определённой энергией, поэтому, когда электрон перемещается между ними, атом будет излучать или поглощать определённое количество излучения, соответствующее разнице. Он испускает излучение, если электрон приближается к ядру, и поглощает излучение, если электрон удаляется от ядра. Поскольку атомы разных химических элементов обладают уникальным расположением энергетических уровней, каждый химический элемент поглощает и испускает излучение с уникальным набором частот — вот, что создаёт спектр.

Однако спектры излучают не только атомы. Любая система, в которой могут присутствовать разные энергетические уровни, может генерировать характерный «отпечаток». Например, сложные молекулы могут вибрировать, вращаться и изменять свою геометрическую конфигурацию. Каждый из этих режимов порождает характерный спектр. Поэтому можно подумать, что наука спектроскопия даёт нам идеальный способ поиска молекул, производимых живыми системами на далёких экзопланетах. Достаточно просто найти характерные следы биологических молекул в спектрах экзопланет, и мы получим неопровержимые доказательства существования жизни.

Давайте же взглянем на Землю: на химический состав её атмосферы оказало сильное влияние присутствие жизни. Вообще, среди всех многих сотен известных атмосферных газов лишь очень немногие не подвержены влиянию присутствия живых существ. Гелий, например, образовался в результате Большого взрыва и составляет около 1 процента атмосферы. Аргон присутствует в ещё меньших количествах; он образуется в результате радиоактивного распада калия глубоко в недрах Земли. Но в остальном живая природа образует, разрушает или видоизменяет практически каждый из газов атмосферы.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука